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Goal of this Lecture Mini-Series

• Accessible to broad audience.
– Assume basic knowledge of multi-dimensional calculus.

• Give overview of practical optimization algorithms for nonlinear
constrained optimization.
– Includes theoretical characterization of optima.

• Concentrate on intuition of algorithms and theoretical concepts.
– No complicated proofs.
– Some “cheating” (ignoring some subtleties).

• 90 min reserved, but roughly targeting 75 min.

• I will make slides available after the lectures.
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Outline

Last week:
• Optimality conditions for unconstrained optimization.
• Three basic unconstrained optimization algorithms.

Today:
• Line search and trust region methods.
• Optimality conditions for constrained optimization.
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Summary of Last Lecture

min
x∈Rn

f (x)

• Look for local minima.
• Main theoretical tool: Taylor expansions.

f (xk + d) ≈ f (xk ) +∇f (xk )T d + 1
2dT∇2f (xk )d

• Necessary optimality conditions:

∇f (x∗) = 0 and ∇2f (x∗) is positive semi-definite

• Sufficient optimality conditions:

∇f (x∗) = 0 and ∇2f (x∗) is positive definite
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Unified Algorithm Framework

• Quadratic model of objective at iterate xk :

qk (xk + d) = f (xk ) +∇f (xk )T d + 1
2dT Bkd

• Different choices of Bk result in different method.

Given: Stopping tolerance ε > 0.
1: Choose x0 and set k ← 0.
2: while ‖∇f (xk )‖ > ε do
3: Compute or update Bk .
4: Minimize qk (xk + d) to get step dk . (dk = −B−1

k ∇f (xk ))
5: Take step xk+1 = xk + dk .
6: Increase iteration counter k ← k + 1.
7: end while
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Comparison of Steps (1)

Gradient method:
• Bk = 1

α I
• dk = −α∇f (xK ).
• Global linear convergence rate for appropriate step size α.
• Does not require second derivatives.

Newton’s method:
• Bk = ∇2f (xk )

• Local quadratic convergence rate.
• Requires computation of ∇2f (xk ).
• Needs special attention when ∇2f (xk ) is indefinite.

– In that case, qk (xk + d) does not have a minimizer.
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Comparison of Steps (2)

Quasi-Newton methods:
• Bk is Hessian approximation.
• Updated in each iteration by a formula (e.g., BFGS).
• Local super-linear convergence rate (in theory under somewhat

strong assumptions, but often in practice).
• Does not require second derivatives.
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Our Algorithm So Far

Given: Stopping tolerance ε > 0.
1: Choose x0 and set k ← 0.
2: while ‖∇f (xk )‖ > ε do
3: Compute or update Bk .
4: Minimize qk (xk + d) to get step dk .

5: Choose step size αk > 0.

6: Take step xk+1 = xk + dk .
7: Increase iteration counter k ← k + 1.
8: end while

Concerns:
• Sometimes, this basic algorithm fails to converge.
• The iterates might cycle or diverge.

• One remedy: Take a shorter step.
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Line Search

xk+1 = xk + αk · dk

• Introduce a step size αk > 0.
• Choose αk so that objective is improved:

f (xk + αk · dk ) < f (xk )

• Called line search because it looks for a new iterate along the line

{xk + α · dk : α > 0}
• We could seek minimizer

min
α>0

f (xk + α · dk )

but that is usually very computationally expensive.
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Backtracking Line Search

Given: Stopping tolerance ε > 0.
1: Choose x0 and set k ← 0.
2: while ‖∇f (xk )‖ > ε do
3: Compute or update Bk .
4: Minimize qk (xk + d) to get step dk .
5: Set αk ← 1.
6: while f (xk + αk · dk ) ≥ f (xk ) do
7: Set αk ← 1

2αk .
8: end while
9: Take step xk+1 = xk + αk · dk .

10: Increase iteration counter k ← k + 1.
11: end while
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UNCLASSIFIED

Descent Direction

f (xk + αk · dk ) < f (xk )

• To make sure such αk > 0 exists, dk should be descent direction.

f (xk + αk · dk )

≈ f (xk ) + αk∇f (xk )T dk

< f (xk )

• So, we need
∇f (xk )T dk < 0.

• Then, for sufficiently small αk , the step is accepted.
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Ensuring Descent Directions

• How can we guarantee that dk is a descent direction?

• Recall step calculation: Solve Bkdk = −∇f (xk ) .

• We want
0 < −∇f (xk )T dk = dT

k Bkdk

• So, dk is a descent direction if Bk is positive definite.
– This is also the condition that ensures qk has minimizer!

• We would not think about this if we just apply Newton’s method
to “∇f (x) = 0”.

Gradient method: Bk = 1
α I

BFGS method: Bk positive definite
Newton’s method: Bk = ∇2f (xk ) ?
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Descent Directions for Newton’s Method

• If f is not convex, Bk = ∇2f (xk ) might not be positive definite.
• In that case, we need to modify Bk .

• One option: Use
Bk = ∇2f (xk ) + λ · I

with some regularization parameter λ ≥ 0.
• If λ sufficiently large, Bk is positive definite.

• Could compute most negative eigenvalue of Bk , but that is costly.
• Cheap strategy: Try increasingly larger values of λ.
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Simple Strategy to Compute Regularization
Parameter λ

Given: xk and parameters λsmall > 0, κ > 1.
1: Set λ← 0.
2: repeat
3: Set Bk ← ∇2f (xk ) + λ · I.
4: Try to compute Cholesky factorization

Bk = LT
k Lk (Lk lower triangular)

5: if successful then
6: Solve LT

k v = −∇f (xk ) and Lkdk = v to get dk .
7: else
8: Set λ← max{λsmall, κ · λ}
9: end if

10: until dk has been computed
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Need Sufficient Decrease

f (x)

x0 x1x2 x3

• In our algorithm, we asked for “f (xk + αk · dk ) < f (xk ).”
• However, that is not enough to guarantee convergence.
• Need to make sure αk provides sufficient decrease in f .
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Armijo Condition

acceptable acceptable

l(α)

α

φ(α)=f (xk +αpk)

• Relaxed tangent: `(α) = f (xk ) + α · η∇f (xk )T dk
• Armijo condition:

f (xk + αkdk ) ≤ f (xk ) + αk · η∇f (xk )T dk

• With this, can prove global convergence under mild assumptions:
– “Every limit point of {xk} is a stationary point.”
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Alternative Strategy: Trust Region

qk (xk + d) = f (xk ) +∇f (xk )T d + 1
2dT∇2f (xk )d

• This is a local model of f (x) around xk .
• We should “trust” it only for a limited range.

• Compute step from trust-region subproblem:

min
d∈Rn

f (xk ) +∇f (xk )T d + 1
2dT∇2f (xk )d

s.t. ‖dk‖ ≤ ∆k

• Trust-region radius ∆k > 0 expresses how far we trust the model.
• ∆k is updated from iteration to iteration.
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Trust-Region Method Example Problem

(From Frank Vanden Berghen’s website)
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Trust-Region Method Example Iteration 1

(From Frank Vanden Berghen’s website)
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Trust-Region Method Example Iteration 2

(From Frank Vanden Berghen’s website)
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Trust-Region Method Example Iteration 3

(From Frank Vanden Berghen’s website)
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Trust-Region Method Example Iteration 4

(From Frank Vanden Berghen’s website)
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Trust-Region Method Example Iteration 5

(From Frank Vanden Berghen’s website)
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Trust-Region Method Example Iteration 6

(From Frank Vanden Berghen’s website)

Los Alamos National Laboratory UNCLASSIFIED Andreas Wächter | 24
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Trust-Region Update

• Idea:
– Increase trust region if qk (xk + dk ) agrees well with f (xk + dk ).
– Decrease trust region if qk (xk + dk ) is very different from f (xk + dk ).

• How can we measure quality of model agreement?
– Predicted reduction: predk = qk (xk )− qk (xk + dk ) > 0
– Actual reduction: aredk = f (xk )− f (xk + dk )
– Agreement ratio: ρk = aredk

predk

• Ideally: ρk ≈ 1.

• Good agreement: ρk ≥ ηgood with ηgood ∈ (0,1).
• Bad agreement: ρk ≤ ηbad with ηbad ∈ (0, ηgood].
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A Basic Trust-Region Algorithm

Given: Parameter ε > 0, 0 < ηbad ≤ ηgood < 1.
1: Choose x0 ∈ Rn, ∆0 > 0. Set k ← 0.
2: while ‖∇f (xk )‖ > ε do
3: Compute or update Bk .
4: Solve trust-region subproblem with radius ∆k to get dk .
5: Set predk = qk (xk )− qk (xk + dk ), aredk = f (xk )− f (xk + dk ).
6: Compute ρk = aredk/predk .
7: if ρk ≥ ηgood then
8: Set xk+1 = xk + dk and ∆k+1 = 2∆k .
9: else if ρk > ηbad then

10: Set xk+1 = xk + dk and ∆k+1 = ∆k .
11: else
12: Set xk+1 = xk and ∆k+1 = 1

2∆k .
13: end if
14: Increase k ← k + 1.
15: end while

Los Alamos National Laboratory UNCLASSIFIED Andreas Wächter | 26
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Trust-Region Algorithm Discussion

• Handles indefinite Bk = ∇2f (xk ) in a natural manner.

• We have ρk → 1 as ∆k → 0.
– So, a new iterate will eventually be accepted.

• The trial points lie on a curved path, not a line.

• As ∆k → 0, trial step approaches gradient direction.

• Convergence can still be achieved if trust-region subproblem is
solved inaccurately, e.g., for large problems.

• Can prove global convergence under mild assumptions:
– “Every limit point of {xk} is a stationary point.”
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Path of Trust Region Trial Points
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Unconstrained Optimization Recap

• We saw three types of step computations dk :
– Gradient method
– Newton’s method
– Quasi-Newton methods

• We saw two strategies to guarantee global convergence:
– Line search
– Trust region

• For large-scale problems:
– Use sparse matrix factorization techniques.
– Use iterative linear solvers, e.g., conjugate gradients.
– Limited-memory BFGS (L-BFGS).
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Constrained Nonlinear Optimization Problems

min
x∈Rn

f (x)

s.t. cE (x) = 0
cI(x) ≤ 0

f : Rn −→ R
cE : Rn −→ RnE

cI : Rn −→ RnI

• We assume that all functions are twice continuously
differentiable.

• A point x ∈ Rn satisfying all constraints, i.e.,

cE (x) = 0
cI(x) ≤ 0

is called feasible.
• Let Ω ⊂ Rn be the set of all feasible point.
• Often called “Nonlinear Program” (NLP).
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Types of Minimizers

min
x∈Rn

f (x)

s.t. cE (x) = 0
cI(x) ≤ 0

(NLP)

• A point x∗ ∈ Rn is a global minimizer of (NLP) if f (x) ≥ f (x∗) for
all x ∈ Rn.

• A point x∗ ∈ Rn is a local minimizer of (NLP), if f (x) ≥ f (x∗) for
all x ∈ Nε(x∗) for some ε > 0.

• Again, the methods we will discuss try to find local minimizers.
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all x ∈ Ω.

• A point x∗ ∈ Ω is a local minimizer of (NLP), if f (x) ≥ f (x∗) for
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• Again, the methods we will discuss try to find local minimizers.
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Special Case: Convex Problems

Definition (Convex Set)
A set S is convex, if for all x , y ∈ S and all λ ∈ [0,1] we have

λ · x + (1− λ) · y ∈ S.

Proposition
If f is convex and Ω is convex, then every local minimizer is a global
minimizer.

Proposition
If all cE are affine and all cI are convex, then Ω is convex.

Examples:
• Linear Programs, Second-Order Cone Programs, Semi-Definite

Programs.
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Optimality Conditions: Equality Constraints

min
x∈Rn

f (x)

s.t . cE (x) = 0
−∇f cE(x) = 0

• Moving along projection of −∇f (x) onto tangent space of
feasible set decreases objective.

• At local minimum, projection of −∇f (x) must be zero.
• For this, −∇f (x∗) must be linear combination of constraint

gradient:
−∇f (x∗) = ∇cE (x∗)λE λE ∈ R

nE

• Notation: Columns of ∇cE (x∗) are the constraints gradients.
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Optimality Conditions: Inequality Constraints

min
x∈Rn

f (x)

s.t . cE (x) = 0
cI(x) ≤ 0

−∇f

−∇f (x∗)∇cE(x
∗)

∇cI

cE(x) = 0

cI(x) ≤ 0

• First local minimum:
– Inequality constraint is inactive (not binding), it might as well not be

there.
• Same relationship as before:

−∇f (x∗) = ∇cE (x∗) · λE

+∇cI(x∗) · λI

λE ∈ R

, λI = 0
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Optimality Conditions: Inequality Constraints
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• Second local minimum:
– Inequality constraint is active.

• Projection of −∇f (x∗) onto tangent space of “cE (x) = 0” points
into direction that violates “cI(x) ≤ 0”.

−∇f (x∗) = ∇cE (x∗) · λE +∇cI(x∗) · λI λE ∈ R, λI ≥ 0
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Optimality Conditions: Inequality Constraints

min
x∈Rn
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s.t . cE (x) = 0
cI(x) ≤ 0
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• Another point where inequality is active.

• Projection of −∇f (x) onto tangent space of “cE (x) = 0” points
into direction that satisfies “cI(x) ≤ 0”.
– Can move into this direction and improve objective.

−∇f (x) = ∇cE (x) · λE +∇cI(x) · λI λE ∈ R, λI < 0
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Summary of Conditions

• Projection of −∇f (x∗) onto the right tangent space must be zero:

∇f (x∗) +∇cE (x∗)λE +∇cI(x∗)λI = 0

for some Lagrangian multipliers λE ∈ RnE and λI ∈ RnI .
– There is no direction that decreases objective and stays feasible.

• Releasing active inequality does not make it possible to improve
objective:

λI ≥ 0

• Only active constraints can contribute to the (local) optimality
conditions:

cI,j(x∗) · λ∗I,j = 0 for all j = 1, . . . ,nI

– If constraint is not active, multiplier must be zero.
– This is called complementarity condition.
– “At least one of cI,j (x∗) and λ∗I,j has to be zero.”
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