Numerical Nonlinear Optimization Part II

Andreas Wächter

Center for Nonlinear Studies

June 29, 2020

UNCLASSIFIED

Goal of this Lecture Mini-Series

- Accessible to broad audience.
 - Assume basic knowledge of multi-dimensional calculus.
- Give overview of practical optimization algorithms for nonlinear constrained optimization.
 - Includes theoretical characterization of optima.
- Concentrate on intuition of algorithms and theoretical concepts.
 - No complicated proofs.
 - Some "cheating" (ignoring some subtleties).
- 90 min reserved, but roughly targeting 75 min.
- I will make slides available after the lectures.

Outline

Last week:

- Optimality conditions for unconstrained optimization.
- Three basic unconstrained optimization algorithms.

Today:

- Line search and trust region methods.
- Optimality conditions for constrained optimization.

Summary of Last Lecture

$$\min_{x\in\mathbb{R}^n} f(x)$$

- Look for local minima.
- Main theoretical tool: Taylor expansions.

 $f(x_k+d) \approx f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla^2 f(x_k) d$

• Necessary optimality conditions:

 $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semi-definite

• Sufficient optimality conditions:

$$\nabla f(x^*) = 0$$
 and $\nabla^2 f(x^*)$ is positive definite

Unified Algorithm Framework

• Quadratic model of objective at iterate *x_k*:

 $q_k(x_k + d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \boldsymbol{B}_k d$

• Different choices of B_k result in different method.

Given: Stopping tolerance $\epsilon > 0$. 1: Choose x_0 and set $k \leftarrow 0$. 2: while $\|\nabla f(x_k)\| > \epsilon$ do 3: Compute or update B_k . 4: Minimize $q_k(x_k + d)$ to get step d_k . $(d_k = -B_k^{-1} \nabla f(x_k))$ 5: Take step $x_{k+1} = x_k + d_k$. 6: Increase iteration counter $k \leftarrow k + 1$.

7: end while

Comparison of Steps (1)

Gradient method:

- $B_k = \frac{1}{\alpha} I$
- $d_k = -\alpha \nabla f(x_K)$.
- Global linear convergence rate for appropriate step size α .
- Does not require second derivatives.

Newton's method:

- $B_k = \nabla^2 f(x_k)$
- Local quadratic convergence rate.
- Requires computation of $\nabla^2 f(x_k)$.
- Needs special attention when $\nabla^2 f(x_k)$ is indefinite.
 - In that case, $q_k(x_k + d)$ does not have a minimizer.

Comparison of Steps (2)

Quasi-Newton methods:

- B_k is Hessian approximation.
- Updated in each iteration by a formula (e.g., BFGS).
- Local super-linear convergence rate (in theory under somewhat strong assumptions, but often in practice).
- Does not require second derivatives.

Our Algorithm So Far

Given: Stopping tolerance $\epsilon > 0$.

- 1: Choose x_0 and set $k \leftarrow 0$.
- 2: while $\|\nabla f(x_k)\| > \epsilon$ do
- 3: Compute or update B_k .
- 4: Minimize $q_k(x_k + d)$ to get step d_k .

6: Take step
$$x_{k+1} = x_k + d_k$$
.

7: Increase iteration counter $k \leftarrow k + 1$.

8: end while

Concerns:

- Sometimes, this basic algorithm fails to converge.
- The iterates might cycle or diverge.

Our Algorithm So Far

Given: Stopping tolerance $\epsilon > 0$.

- 1: Choose x_0 and set $k \leftarrow 0$.
- 2: while $\|\nabla f(x_k)\| > \epsilon$ do
- 3: Compute or update B_k .
- 4: Minimize $q_k(x_k + d)$ to get step d_k .

6: Take step
$$x_{k+1} = x_k + d_k$$
.

7: Increase iteration counter $k \leftarrow k + 1$.

8: end while

Concerns:

- Sometimes, this basic algorithm fails to converge.
- The iterates might cycle or diverge.
- One remedy: Take a shorter step.

Our Algorithm So Far

Given: Stopping tolerance $\epsilon > 0$.

- 1: Choose x_0 and set $k \leftarrow 0$.
- 2: while $\|\nabla f(x_k)\| > \epsilon$ do
- 3: Compute or update B_k .
- 4: Minimize $q_k(x_k + d)$ to get step d_k .
- 5: Choose step size $\alpha_k > 0$.
- 6: Take step $x_{k+1} = x_k + \alpha_k \cdot d_k$.
- 7: Increase iteration counter $k \leftarrow k + 1$.

8: end while

Concerns:

- Sometimes, this basic algorithm fails to converge.
- The iterates might cycle or diverge.
- One remedy: Take a shorter step.

Line Search

$$x_{k+1} = x_k + \frac{\alpha_k}{\alpha_k} \cdot d_k$$

- Introduce a step size $\alpha_k > 0$.
- Choose α_k so that objective is improved:

$$f(x_k + \alpha_k \cdot d_k) < f(x_k)$$

• Called line search because it looks for a new iterate along the line

$$\{x_k + \alpha \cdot d_k : \alpha > \mathbf{0}\}$$

• We could seek minimizer

$$\min_{\alpha>0} f(x_k + \alpha \cdot d_k)$$

but that is usually very computationally expensive.

Los Alamos National Laboratory

UNCLASSIFIED

Backtracking Line Search

Given: Stopping tolerance $\epsilon > 0$.
1: Choose x_0 and set $k \leftarrow 0$.
2: while $\ abla f(x_k)\ > \epsilon$ do
3: Compute or update B_k .
4: Minimize $q_k(x_k + d)$ to get step d_k .
5: Set $\alpha_k \leftarrow 1$.
6: while $f(x_k + lpha_k \cdot d_k) \ge f(x_k)$ do
7: Set $\alpha_k \leftarrow \frac{1}{2}\alpha_k$.
8: end while
9: Take step $x_{k+1} = x_k + \frac{\alpha_k}{\alpha_k} \cdot d_k$.
10: Increase iteration counter $k \leftarrow k + 1$.
11: end while

Descent Direction

$$f(x_k + \alpha_k \cdot d_k) < f(x_k)$$

• To make sure such $\alpha_k > 0$ exists, d_k should be descent direction.

$$f(x_k + \frac{\alpha_k}{\alpha_k} \cdot d_k) \qquad \qquad < f(x_k)$$

Descent Direction

$$f(x_k + \alpha_k \cdot d_k) < f(x_k)$$

• To make sure such $\alpha_k > 0$ exists, d_k should be descent direction.

$$f(x_k + \alpha_k \cdot d_k) \approx f(x_k) + \alpha_k \nabla f(x_k)^T d_k < f(x_k)$$

• So, we need

$$\nabla f(x_k)^T d_k < 0.$$

• Then, for sufficiently small α_k , the step is accepted.

Ensuring Descent Directions

- How can we guarantee that *d_k* is a descent direction?
- Recall step calculation: Solve $\left| \frac{B_k d_k}{B_k d_k} \nabla f(x^k) \right|$
- We want

$$0 < -\nabla f(x_k)^T d_k = d_k^T \frac{B_k}{B_k} d_k$$

- So, d_k is a descent direction if B_k is positive definite.
 This is also the condition that ensures q_k has minimizer!
- We would not think about this if we just apply Newton's method to "∇f(x) = 0".

Gradient method: BFGS method: Newton's method:

$$B_{k} = \frac{1}{\alpha}I$$

$$B_{k} \text{ positive definite}$$

$$B_{k} = \nabla^{2}f(x_{k})$$

Descent Directions for Newton's Method

- If *f* is not convex, $B_k = \nabla^2 f(x_k)$ might not be positive definite.
- In that case, we need to modify B_k .
- One option: Use

$$\boldsymbol{B}_k = \nabla^2 f(\boldsymbol{x}_k) + \boldsymbol{\lambda} \cdot \boldsymbol{I}$$

with some regularization parameter $\lambda \geq 0$.

- If λ sufficiently large, B_k is positive definite.
- Could compute most negative eigenvalue of B_k , but that is costly.
- Cheap strategy: Try increasingly larger values of λ .

Simple Strategy to Compute Regularization Parameter λ

Given: x_k and parameters $\lambda_{\text{small}} > 0$, $\kappa > 1$.

- 1: Set $\lambda \leftarrow 0$.
- 2: repeat

3: Set
$$B_k \leftarrow \nabla^2 f(x_k) + \lambda \cdot I$$
.

4: Try to compute Cholesky factorization

$$B_k = L_k^T L_k$$

(Lk lower triangular)

5: if successful then

6: Solve
$$L_k^T v = -\nabla f(x_k)$$
 and $L_k d_k = v$ to get d_k .

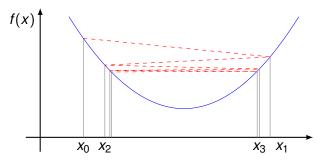
7: **else**

8: Set
$$\lambda \leftarrow \max\{\lambda_{\text{small}}, \kappa \cdot \lambda\}$$

9: end if

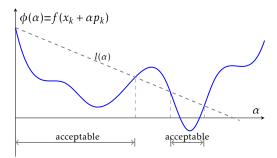
10: **until** d_k has been computed

Need Sufficient Decrease



- In our algorithm, we asked for " $f(x_k + \alpha_k \cdot d_k) < f(x_k)$."
- However, that is not enough to guarantee convergence.
- Need to make sure α_k provides <u>sufficient</u> decrease in *f*.

Armijo Condition



- Relaxed tangent: $\ell(\alpha) = f(x_k) + \alpha \cdot \eta \nabla f(x_k)^T d_k$
- Armijo condition:

$$f(\mathbf{x}_k + \alpha_k \mathbf{d}_k) \leq f(\mathbf{x}_k) + \alpha_k \cdot \eta \nabla f(\mathbf{x}_k)^T \mathbf{d}_k$$

- With this, can prove global convergence under mild assumptions:
 - "Every limit point of {x_k} is a stationary point."

Alternative Strategy: Trust Region

 $q_k(x_k+d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla^2 f(x_k) d$

- This is a <u>local</u> model of f(x) around x_k .
- We should "trust" it only for a limited range.
- Compute step from trust-region subproblem:

 $\min_{d\in\mathbb{R}^n} f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla^2 f(x_k) d$

- <u>Trust-region radius</u> $\Delta_k > 0$ expresses how far we trust the model.
- Δ_k is updated from iteration to iteration.

Alternative Strategy: Trust Region

 $q_k(x_k+d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla^2 f(x_k) d$

- This is a <u>local</u> model of f(x) around x_k .
- We should "trust" it only for a limited range.
- Compute step from trust-region subproblem:

 $\min_{d\in\mathbb{R}^n} f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla^2 f(x_k) d$

- <u>Trust-region radius</u> $\Delta_k > 0$ expresses how far we trust the model.
- Δ_k is updated from iteration to iteration.

Alternative Strategy: Trust Region

 $q_k(x_k+d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla^2 f(x_k) d$

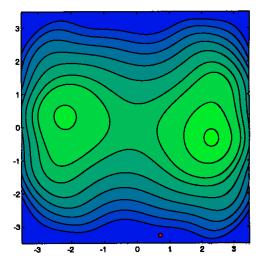
- This is a <u>local</u> model of f(x) around x_k .
- We should "trust" it only for a limited range.
- Compute step from trust-region subproblem:

$$\min_{d \in \mathbb{R}^n} \quad f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \nabla^2 f(x_k) d$$

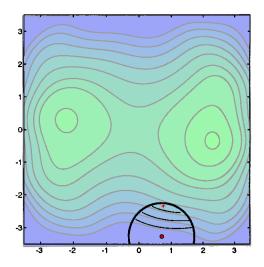
s.t. $\|d_k\| \le \Delta_k$

- <u>Trust-region radius</u> $\Delta_k > 0$ expresses how far we trust the model.
- Δ_k is updated from iteration to iteration.

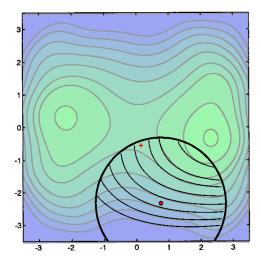
Trust-Region Method Example Problem



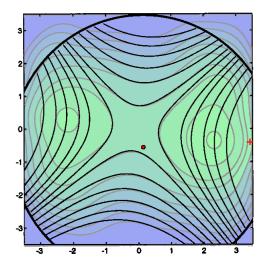
Trust-Region Method Example Iteration 1



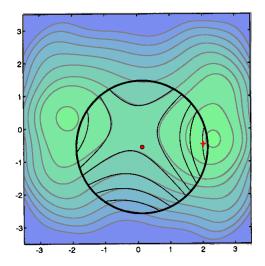
Trust-Region Method Example Iteration 2



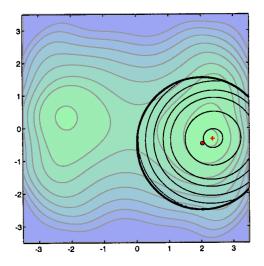
Trust-Region Method Example Iteration 3



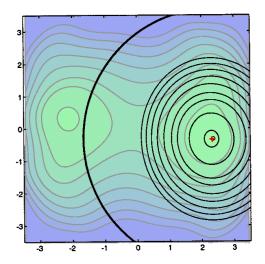
Trust-Region Method Example Iteration 4



Trust-Region Method Example Iteration 5



Trust-Region Method Example Iteration 6



Trust-Region Update

- Idea:
 - Increase trust region if $q_k(x_k + d_k)$ agrees well with $f(x_k + d_k)$.
 - Decrease trust region if $q_k(x_k + d_k)$ is very different from $f(x_k + d_k)$.
- How can we measure quality of model agreement?
 - Predicted reduction: $pred_k = q_k(x_k) q_k(x_k + d_k) > 0$
 - Actual reduction:

ared_k =
$$f(x_k) - f(x_k + d_k)$$

ared_k = $ared_k$

- Agreement ratio:
- $\rho_k = \frac{\text{ared}_k}{\text{pred}_k}$
- Ideally: $\rho_k \approx 1$.
- Good agreement: $\rho_k \geq \eta_{\text{good}}$ with $\eta_{\text{good}} \in (0, 1)$.
- Bad agreement: $\rho_k \leq \eta_{\text{bad}}$ with $\eta_{\text{bad}} \in (0, \eta_{\text{good}}]$.

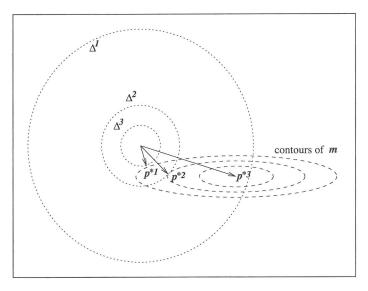
A Basic Trust-Region Algorithm

```
Given: Parameter \epsilon > 0, 0 < \eta_{bad} \leq \eta_{acod} < 1.
 1: Choose x_0 \in \mathbb{R}^n, \Delta_0 > 0. Set k \leftarrow 0.
 2: while \|\nabla f(x_k)\| > \epsilon do
          Compute or update B_k.
 3:
          Solve trust-region subproblem with radius \Delta_k to get d_k.
 4:
          Set pred<sub>k</sub> = q_k(x_k) - q_k(x_k + d_k), ared<sub>k</sub> = f(x_k) - f(x_k + d_k).
 5:
 6:
          Compute \rho_k = \operatorname{ared}_k / \operatorname{pred}_k.
 7:
          if \rho_k \geq \eta_{\text{good}} then
                Set x_{k+1} = x_k + d_k and \Delta_{k+1} = 2\Delta_k.
 8:
          else if \rho_k > \eta_{\text{bad}} then
 9:
10:
                Set x_{k+1} = x_k + d_k and \Delta_{k+1} = \Delta_k.
11:
          else
               Set x_{k+1} = x_k and \Delta_{k+1} = \frac{1}{2}\Delta_k.
12:
          end if
13:
14.
          Increase k \leftarrow k + 1.
15: end while
```

Trust-Region Algorithm Discussion

- Handles indefinite $B_k = \nabla^2 f(x_k)$ in a natural manner.
- We have $\rho_k \to 1$ as $\Delta_k \to 0$.
 - So, a new iterate will eventually be accepted.
- The trial points lie on a curved path, not a line.
- As $\Delta_k \rightarrow 0$, trial step approaches gradient direction.
- Convergence can still be achieved if trust-region subproblem is solved inaccurately, e.g., for large problems.
- Can prove global convergence under mild assumptions:
 - "Every limit point of $\{x_k\}$ is a stationary point."

Path of Trust Region Trial Points



Unconstrained Optimization Recap

- We saw three types of step computations *d_k*:
 - Gradient method
 - Newton's method
 - Quasi-Newton methods
- We saw two strategies to guarantee global convergence:
 - Line search
 - Trust region
- For large-scale problems:
 - Use sparse matrix factorization techniques.
 - Use iterative linear solvers, e.g., conjugate gradients.
 - Limited-memory BFGS (L-BFGS).

Constrained Nonlinear Optimization Problems

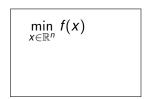
- We assume that all functions are twice continuously differentiable.
- A point $x \in \mathbb{R}^n$ satisfying all constraints, i.e.,

 $c_E(x) = 0$ $c_I(x) \le 0$

is called feasible.

- Let $\Omega \subset \mathbb{R}^n$ be the set of all feasible point.
- Often called "Nonlinear Program" (NLP).

Types of Minimizers



A point x^{*} ∈ ℝⁿ is a <u>global</u> minimizer of (NLP) if f(x) ≥ f(x^{*}) for all x ∈ ℝⁿ.

(NLP)

A point x* ∈ ℝⁿ is a local minimizer of (NLP), if f(x) ≥ f(x*) for all x ∈ N_ϵ(x*) for some ϵ > 0.

Types of Minimizers

$$\begin{array}{c} \min_{x \in \mathbb{R}^n} f(x) \\ \text{s.t. } c_E(x) = 0 \\ c_l(x) \leq 0 \end{array} \quad (\text{NLP})$$

- A point x^{*} ∈ Ω is a <u>global</u> minimizer of (NLP) if f(x) ≥ f(x^{*}) for all x ∈ Ω.
- A point x^{*} ∈ Ω is a local minimizer of (NLP), if f(x) ≥ f(x^{*}) for all x ∈ N_ε(x^{*}) ∪ Ω for some ε > 0.
- Again, the methods we will discuss try to find local minimizers.

Special Case: Convex Problems

Definition (Convex Set)

A set *S* is <u>convex</u>, if for all $x, y \in S$ and all $\lambda \in [0, 1]$ we have

 $\lambda \cdot \mathbf{x} + (\mathbf{1} - \lambda) \cdot \mathbf{y} \in \mathbf{S}.$

Proposition

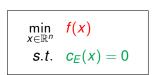
If f is convex and Ω is convex, then every local minimizer is a global minimizer.

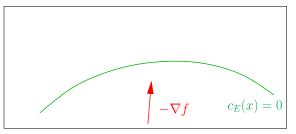
Proposition

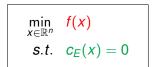
If all c_E are affine and all c_I are convex, then Ω is convex.

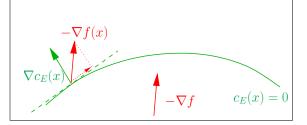
Examples:

• Linear Programs, Second-Order Cone Programs, Semi-Definite Programs.

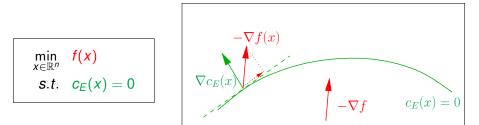






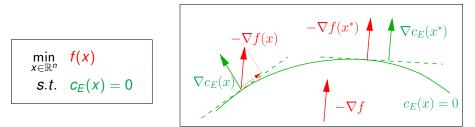


Optimality Conditions: Equality Constraints

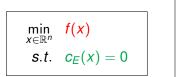


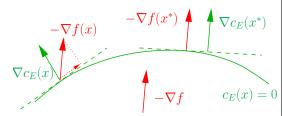
 Moving along projection of -∇f(x) onto tangent space of feasible set decreases objective.

Optimality Conditions: Equality Constraints

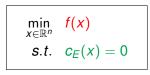


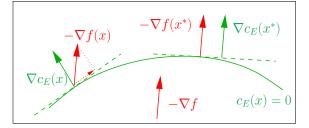
 Moving along projection of -∇f(x) onto tangent space of feasible set decreases objective.



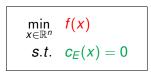


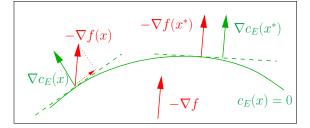
- Moving along projection of −∇f(x) onto tangent space of feasible set decreases objective.
- At local minimum, projection of $-\nabla f(x)$ must be zero.





- Moving along projection of -∇f(x) onto tangent space of feasible set decreases objective.
- At local minimum, projection of $-\nabla f(x)$ must be zero.
- For this, -∇f(x*) must be linear combination of constraint gradient:
 -∇f(x*) = ∇c_E(x*) λ_E λ_E ∈ ℝ



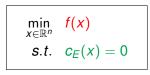


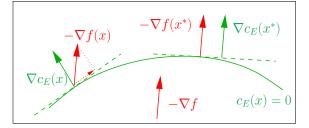
- Moving along projection of -∇f(x) onto tangent space of feasible set decreases objective.
- At local minimum, projection of $-\nabla f(x)$ must be zero.
- For this, -∇f(x*) must be linear combination of constraint gradients:

$$-\nabla f(\boldsymbol{x}^*) = \sum_{j=1}^{n_E} \nabla c_{E,j}(\boldsymbol{x}^*) \, \lambda_{E,j}$$

$$\lambda_E \in \mathbb{R}^{n_E}$$

Optimality Conditions: Equality Constraints



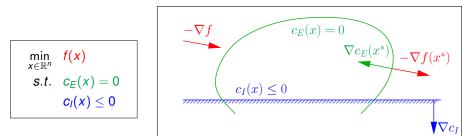


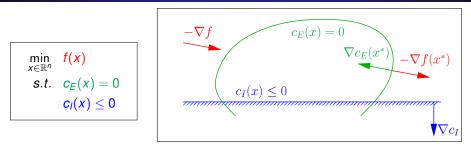
- Moving along projection of -∇f(x) onto tangent space of feasible set decreases objective.
- At local minimum, projection of $-\nabla f(x)$ must be zero.
- For this, -∇f(x*) must be linear combination of constraint gradients:

$$-\nabla f(x^*) = \sum_{j=1}^{n_E} \nabla c_{E,j}(x^*) \lambda_{E,j} = \nabla c_E(x^*) \lambda_E$$

 $\lambda_E \in \mathbb{R}^{n_E}$

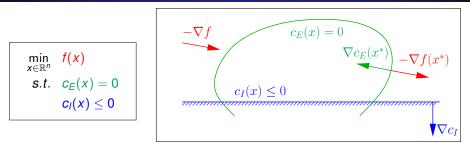
• Notation: Columns of $\nabla c_E(x^*)$ are the constraints gradients.





- First local minimum:
 - Inequality constraint is inactive (not binding), it might as well not be there.

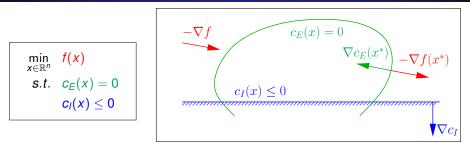
Optimality Conditions: Inequality Constraints



- First local minimum:
 - Inequality constraint is inactive (not binding), it might as well not be there.
- Same relationship as before:

 $-\nabla f(x^*) = \nabla c_E(x^*) \cdot \lambda_E$

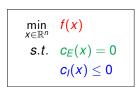
 $\lambda_E \in \mathbb{R}$

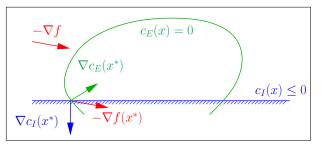


- First local minimum:
 - Inequality constraint is inactive (not binding), it might as well not be there.
- Same relationship as before:

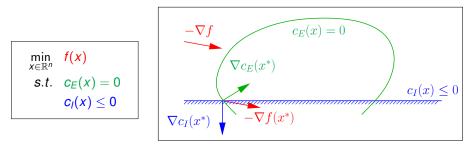
$$-\nabla f(\boldsymbol{x}^*) = \nabla c_E(\boldsymbol{x}^*) \cdot \lambda_E + \nabla c_I(\boldsymbol{x}^*) \cdot \lambda_I$$

$$\lambda_E \in \mathbb{R}, \ \lambda_I = \mathbf{0}$$

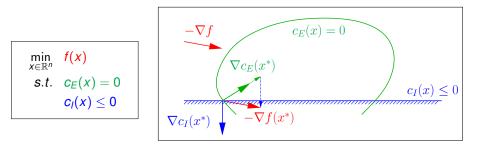




- Second local minimum:
 - Inequality constraint is active.



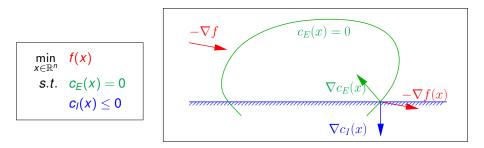
- Second local minimum:
 - Inequality constraint is active.
- Projection of -∇f(x*) onto tangent space of "c_E(x) = 0" points into direction that violates "c_l(x) ≤ 0".



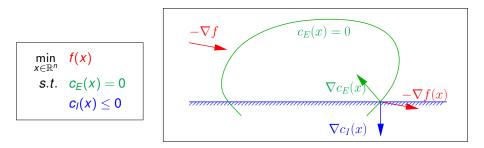
- Second local minimum:
 - Inequality constraint is active.
- Projection of -∇f(x*) onto tangent space of "c_E(x) = 0" points into direction that violates "c_l(x) ≤ 0".

$$\left|-\nabla f(x^*) = \nabla c_E(x^*) \cdot \lambda_E + \nabla c_I(x^*) \cdot \lambda_I\right| \qquad \lambda_E \in \mathbb{R}, \ \lambda_I \ge 0$$

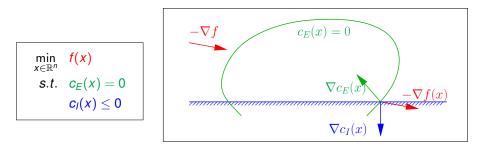
Optimality Conditions: Inequality Constraints



• Another point where inequality is active.

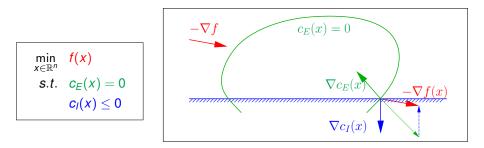


- Another point where inequality is active.
- Projection of -∇f(x) onto tangent space of "c_E(x) = 0" points into direction that satisfies "c_l(x) ≤ 0".



- Another point where inequality is active.
- Projection of -∇f(x) onto tangent space of "c_E(x) = 0" points into direction that satisfies "c_l(x) ≤ 0".
 - Can move into this direction and improve objective.

Optimality Conditions: Inequality Constraints



- Another point where inequality is active.
- Projection of -∇f(x) onto tangent space of "c_E(x) = 0" points into direction that satisfies "c_l(x) ≤ 0".
 - Can move into this direction and improve objective.

$$-\nabla f(\mathbf{x}) = \nabla c_{E}(\mathbf{x}) \cdot \lambda_{E} + \nabla c_{I}(\mathbf{x}) \cdot \lambda_{I} \qquad \lambda_{E} \in \mathbb{R}, \ \lambda_{I} < \mathbf{x}$$

0

Summary of Conditions

• Projection of $-\nabla f(x^*)$ onto the right tangent space must be zero:

 $\nabla f(x^*) + \nabla c_E(x^*)\lambda_E + \nabla c_I(x^*)\lambda_I = 0$

for some Lagrangian multipliers $\lambda_E \in \mathbb{R}^{n_E}$ and $\lambda_I \in \mathbb{R}^{n_I}$.

- There is no direction that decreases objective and stays feasible.
- Releasing active inequality does not make it possible to improve objective:

$\lambda_I \ge \mathbf{0}$

Only active constraints can contribute to the (local) optimality conditions:

$$c_{l,j}(x^*) \cdot \lambda_{l,j}^* = 0$$
 for all $j = 1, \dots, n$

- If constraint is not active, multiplier must be zero.
- This is called complementarity condition.
- "At least one of $c_{l,j}(x^*)$ and $\lambda_{l,j}^*$ has to be zero."