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Outline

Last week:
• Line search and trust region methods for unconstrained

optimization.
• Started discussion of optimality conditions for constrained

optimization.

Today:
• Optimality conditions for constrained optimization.
• Solving quadratic problems with equality constraints
• Solving quadratic problems with inequality constraints

Next week:
• Sequential Quadratic Programming
• Interior-Point Methods
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Constrained Nonlinear Optimization Problems

min
x∈Rn

f (x)

s.t. cE (x) = 0
cI(x) ≤ 0

f : Rn −→ R
cE : Rn −→ RnE

cI : Rn −→ RnI

• We assume that all functions are twice continuously
differentiable.

• Often called “Nonlinear Program” (NLP).

• For problems with convex objective and linear equality and
convex inequality constraints, every local minimizer is a global
minimizer.
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Optimality Conditions: Equality Constraints

min
x∈Rn

f (x)

s.t . cE (x) = 0
−∇f cE(x) = 0

• Moving along projection of −∇f (x) onto tangent space of
feasible set decreases objective.

• At local minimum, projection of −∇f (x) must be zero.
• For this, −∇f (x∗) must be linear combination of constraint

gradient:
−∇f (x∗) = ∇cE (x∗)λE λE ∈ R

nE

• Notation: Columns of ∇cE (x∗) are the constraints gradients.
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UNCLASSIFIED

Optimality Conditions: Equality Constraints

min
x∈Rn

f (x)

s.t . cE (x) = 0
−∇f

−∇f (x∗)
−∇f (x)

∇cE(x
∗)

∇cE(x)

cE(x) = 0

• Moving along projection of −∇f (x) onto tangent space of
feasible set decreases objective.

• At local minimum, projection of −∇f (x) must be zero.
• For this, −∇f (x∗) must be linear combination of constraint

gradient:
−∇f (x∗) = ∇cE (x∗)λE λE ∈ R

nE

• Notation: Columns of ∇cE (x∗) are the constraints gradients.

Los Alamos National Laboratory UNCLASSIFIED Andreas Wächter | 4
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Optimality Conditions: Inequality Constraints

min
x∈Rn

f (x)

s.t . cE (x) = 0
cI(x) ≤ 0

−∇f

−∇f (x∗)∇cE(x
∗)

∇cI

cE(x) = 0

cI(x) ≤ 0

• First local minimum:
– Inequality constraint is inactive (not binding), it might as well not be

there.
• Same relationship as before:

−∇f (x∗) = ∇cE (x∗) · λE

+∇cI(x∗) · λI

λE ∈ R

, λI = 0
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UNCLASSIFIED

Optimality Conditions: Inequality Constraints

min
x∈Rn

f (x)

s.t . cE (x) = 0
cI(x) ≤ 0

−∇f

−∇f (x)
∇cE(x)

∇cI(x)

cE(x) = 0

• Another point where inequality is active.
• Projection of −∇f (x) onto tangent space of “cE (x) = 0” points

into direction that satisfies “cI(x) ≤ 0”.
– Can move into this direction and improve objective.

−∇f (x) = ∇cE (x) · λE +∇cI(x) · λI λE ∈ R, λI < 0

Los Alamos National Laboratory UNCLASSIFIED Andreas Wächter | 7
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Summary of Conditions

• Projection of −∇f (x∗) onto the right tangent space must be zero:

∇f (x∗) +∇cE (x∗)λE +∇cI(x∗)λI = 0

for some Lagrangian multipliers λE ∈ RnE and λI ∈ RnI .
– There is no direction that decreases objective and stays feasible.

• Releasing active inequality does not make it possible to improve
objective:

λI ≥ 0

• Only active constraints can contribute to the (local) optimality
conditions:

cI,j(x∗) · λ∗I,j = 0 for all j = 1, . . . ,nI

– If constraint is not active, multiplier must be zero.
– This is called complementarity condition.
– “At least one of cI,j (x∗) and λ∗I,j has to be zero.”
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KKT Conditions

Theorem (First-Order Necessary Optimality Conditions)
Let x∗ be a local minimizer and suppose that f , cE , and cI are
continuously differentiable. Further assume that a “constraint
qualification” holds. Then there exist Lagrangian multipliers
λ∗E ∈ RnE and λ∗I ∈ RnI so that the following conditions hold:

∇f (x∗) +∇cE (x∗)λ∗E +∇cI(x∗)λ∗I = 0
cE (x∗) = 0
cI(x∗) ≤ 0

λ∗I ≥ 0
cI,j(x∗) · λ∗I,j = 0 for all j = 1, . . . ,nI

• These conditions are called the KKT conditions.
– Named after Karush, Kuhn, and Tucker.
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UNCLASSIFIED

Existence of Multipliers

min
x∈R2

f (x) = x1

s.t . c1(x) = x2 − x3
1 ≤ 0

c2(x) = −x2 ≤ 0

x1

x2
c1(x) ≤ 0

c2(x) ≤ 0

−∇f (x)

• Optimal solution: x∗ = (0,0)T

• −∇f (x∗) is not a linear combination of constraint gradients!
• No Lagrangian multipliers exist.
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Constraint Qualifications

• A constraint qualification is a condition that ensures the
existence of Lagrangian multipliers.

• If no multipliers exist, algorithms that seek KKT points might have
difficulties or fail!

• Ipopt heuristic: “cI(x) ≤ bound relax factor”
– Relaxed solution more likely to satisfy constraint qualification.

Examples:
• Linear-Independence Constraint Qualification (LICQ)

– The constraint gradients for all active constraints are linearly
independent.

• All constraints are linear, e.g., Linear Programs.
• Mangasarian-Fromovitz Constraint Qualification (MFCQ)

– Looser than LICQ.
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Lagrangian Function

min
x∈Rn

f (x)

s.t . cE (x) = 0
cI(x) ≤ 0

(NLP)

• The Lagrangian function for (NLP) is defined as

L(x , λE , λI) = f (x) + cE (x)TλE + cI(x)TλI

• Helps to express relationships and optimality conditions.
• For example, first equation in KKT conditions:

0 = ∇f (x∗) +∇cE (x∗)λ∗E +∇cI(x∗)λ∗I = ∇xL(x∗, λ∗E , λ
∗
I )
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Null Space of Constraint Gradients

min
x∈Rn

f (x)

s.t . cE (x) = 0

−∇f

−∇f (x∗)
−∇f (x)

∇cE(x
∗)

∇cE(x)

cE(x) = 0

• It only matters how the objective changes within the feasible set.
• Look at directions in the null space of constraint gradients:

NΩ(x∗) = {d ∈ Rn : ∇cE (x∗)T d = 0}

Los Alamos National Laboratory UNCLASSIFIED Andreas Wächter | 13
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Second-Order Optimality Conditions For
Equality-Constrained Problems

min
x∈Rn

f (x)

s.t . cE (x) = 0

−∇f

−∇f (x∗)
−∇f (x)

∇cE(x
∗)

∇cE(x)

cE(x) = 0

• Hessian of Lagrangian function

∇2
xxL(x∗, λ∗E ) = ∇2f (x∗) +

nE∑
j=1

∇2cE ,j(x∗) · λ∗E ,j

captures curvature of objective and constraints.
• Necessary second-order optimality condition:

dT∇2
xxL(x∗, λ∗E )d ≥ 0 for all d ∈ NΩ(x∗)
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Strict Complementarity

Definition (Strict Complementarity)
Let x∗ a local minimizer and λ∗E and λ∗I be Lagrangian multipliers so
that the KKT conditions hold. We say that strict complementarity
holds if

cI,j(x∗) < 0 or λI,j > 0 for all j = 1, . . . ,nI

• If an inequality is active, its multiplier is non-zero.
• Then the inequality constraint is “strongly binding”; we can treat it

as equality constraint in the 2nd-order optimality conditions.
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Null Space of Active Constraints

Active set:

• A constraint that holds with equality at x ∈ Ω is “active at x”.
• Active set A(x) for x ∈ Ω:

– Indices of all constraints that are active at x , including all cE .

Null space of active constraint gradients:

NΩ(x∗) = {d ∈ Rn : ∇cj(x∗)T d = 0 for all j ∈ A(x∗)}
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Necessary Second-Order Optimality Conditions

Theorem (Necessary Second-Order Optimality Conditions)
Let x∗ be a local minimizer with KKT multipliers λ∗E and λ∗I at which
LICQ and strict complementarity holds. Then

dT∇2
xxL(x∗, λ∗E , λ

∗
I )d ≥ 0 for all d ∈ NΩ(x∗)

Theorem (Sufficient Second-Order Optimality Conditions)
Let x∗, λ∗E , and λ∗I be such that the KKT conditions and strict
complementarity holds. If

dT∇2
xxL(x∗, λ∗E , λ

∗
I )d > 0 for all d ∈ NΩ(x∗) \ {0}

then x∗ is a strict local minimizer.
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Quadratic Programming

min
x∈Rn

1
2xT Qx + gT x

s.t. AEx + bE = 0
AIx + bI ≤ 0

(QP)
Q ∈ Rn×n symmetric

AE ∈ RnE×n bE ∈ RnE

AI ∈ RnI×n bI ∈ RnI

• Many applications (e.g., portfolio optimization, optimal control).
• Important building block for methods for general NLP.
• Algorithms:

– Active-set methods
– Interior-point methods

• Let’s first consider equality-constrained case.
• Assume: all rows of AE are linearly independent.
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UNCLASSIFIED

Equality-Constrained QP

min
x∈Rn

1
2xT Qx + gT x

s.t. Ax + b = 0
(EQP)

First-order optimality conditions:

Qx + g + ATλ = 0
Ax + b = 0

Find stationary point (x∗, λ∗) by solving the linear system[
Q AT

A 0

](
x∗

λ∗

)
= −

(
g
b

)
.
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KKT System of QP

[
Q AT

A 0

](
x∗

λ∗

)
= −

(
g
b

)
• When is (x∗, λ∗) indeed a solution of (EQP)?
• Recall the sufficient second-order optimality condition:

– If KKT conditions and

dT Q d > 0 for all d ∈ NΩ(x∗) \ {0}

hold, then x∗ is a strict local minimizer of (EQP).

• On the other hand:
– If Q has negative eigenvalue in NΩ(x∗), then (EQP) is unbounded

below.
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Direct Solution of the KKT System

[
Q AT

A 0

]
︸ ︷︷ ︸

=:K

(
x∗

λ∗

)
= −

(
g
b

)

• Can we verify that x∗ is minimizer without computing NΩ(x∗)?

Definition (Inertia of Matrix)
Let n+, n−, n0 be the number of positive, negative, and zero
eigenvalues of a symmetric matrix K . Then In(K ) = (n+,n−,n0) is
called the inertia of K .

Theorem
Suppose that A has full rank. If In(K ) = (n,nE ,0), then x∗ is the
unique global minimizer of (EQP).
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Computing the Inertia

[
Q AT

A 0

]
︸ ︷︷ ︸

=:K

(
x∗

λ∗

)
= −

(
g
b

)

• Symmetric indefinite factorization K = LBLT

– L: unit lower triangular matrix
– B: block diagonal matrix with 1× 1 and 2× 2 diagonal blocks

• Can be computed efficiently, exploits sparsity.
• Factorization used to solve the linear system.
• Obtain inertia from counting eigenvalues of the blocks in B.

– This is easy!
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Ways to Solve Equality-Constrained QPs

• Direct method:
– Factorize KKT matrix.
– If LT BL factorization is used, we can determine if x∗ is indeed a

minimizer.
– Easy general-purpose option.

• Schur-complement method:
– Requires that Q is positive definite and easy to factorize (e.g.,

diagonal).
– Number of constraints nE should not be large.
– Often used in interior-point LP solvers.

• Null-space method:
– Step decomposition into range-space step and null-space step.
– Permits exploitation of constraint matrix structure.
– Number of degrees of freedom (n − nE ) should not be large.
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Inequality-Constrained QPs

min
x∈Rn

1
2xT Qx + gT x

s.t. aT
i x + bi = 0 for i ∈ E

aT
i x + bi ≤ 0 for i ∈ I

Qx + g +
∑

i∈E∪I
aiλi = 0

aT
i x + bi = 0 for i ∈ E

aT
i x + bi ≤ 0 for i ∈ I

λi ≥ 0 for i ∈ I
(aT

i x + bi)λi = 0 for i ∈ I• Assume here:
– Q is positive definite.
– {ai}i∈E are linearly independent.

• Difficulty: Decide, which inequality constraints are active at x∗.

• If that was known, could just solve equality-constrained QPs.

Los Alamos National Laboratory UNCLASSIFIED Andreas Wächter | 24
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Working Set

Choose working setW ⊆ I (guess of optimal active set) and solve

(EQP)

min
x∈Rn

1
2xT Qx + gT x

s.t. aT
i x + bi = 0 for i ∈ E

aT
i x + bi = 0 for i ∈ W

Qx + g +
∑

i∈E∪W
aiλi = 0

aT
i x + bi = 0 for i ∈ E

aT
i x + bi = 0 for i ∈ W

Solution of KKT system for (EQP) gives

xEQP ∈ Rn and λEQP
i for i ∈ E ∪W

Complete to candidate optimal KKT solution we set

λEQP
i = 0 for i ∈ I \W
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Optimality Test

min
x∈Rn

1
2xT Qx + gT x

s.t. aT
i x + bi = 0 for i ∈ E

aT
i x + bi = 0 for i ∈ W

Qx + g +
∑

i∈E∪W
aiλi = 0

aT
i x + bi = 0 for i ∈ E

aT
i x + bi = 0 for i ∈ W

Check if (xEQP, λEQP) is optimal KKT point for (QP):

aT
i xEQP + bi

?
≤ 0 for i ∈ I \W

λEQP
i

?
≥ 0 for i ∈ I

• Complementarity holds by construction (λi = 0 for i ∈ I \W).
• If satisfied, (xEQP, λEQP) is the (unique) optimal solution.
• Otherwise, let’s try a different working set.
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Demonstration on Example QP

(3)

(1)
(2)

(4)

(5)

min (x1 − 1)2 + (x2 − 2.5)2

s.t. − x1 + 2x2 − 2 ≤ 0 (1) −x1 ≤ 0 (4)
x1 + 2x2 − 6 ≤ 0 (2) −x2 ≤ 0 (5)
x1 − 2x2 − 2 ≤ 0 (3)
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Primal Active-Set QP Solver Iteration 1

(3)

(1)
(2)

(4)

(5)

W = {3,5}

x = (0,2)

xEQP = (0,2)

λ3 = −2
λ5 = −1

Initialization:
Choose feasible starting iterate x

Choose working setW ⊆ I with
• i ∈ W =⇒ aT

i x + bi = 0
• {ai}i∈E∪W are linear independent
(Algorithm will maintain these properties)
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Primal Active-Set QP Solver Iteration 1

(3)

(1)
(2)

(4)

(5)

W = {3,5}
x = (0,2)

xEQP = (0,2)

λ3 = −2
λ5 = −1

Initialization:
Choose feasible starting iterate x
Choose working setW ⊆ I with
• i ∈ W =⇒ aT

i x + bi = 0
• {ai}i∈E∪W are linear independent
(Algorithm will maintain these properties)
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Primal Active-Set QP Solver Iteration 1

(3)

(1)
(2)

(4)

(5)

W = {3,5}
x = (0,2)

xEQP = (0,2)

λ3 = −2
λ5 = −1

Solve (EQP)

Los Alamos National Laboratory UNCLASSIFIED Andreas Wächter | 28
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Primal Active-Set QP Solver Iteration 1

(3)

(1)
(2)

(4)

(5)

W = {3,5}
x = (0,2)

xEQP = (0,2)

λ3 = −2
λ5 = −1

Status: Current iterate is optimal for (EQP).

Release Constraint:
• Pick constraint i with λi < 0 (here i = 3).

• Remove i from working set:
W ←W \ {3} = {5}

• Keep iterate x = (0,2).
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Primal Active-Set QP Solver Iteration 1

(3)

(1)
(2)

(4)

(5)

W = {3,5}
x = (0,2)

xEQP = (0,2)

λ3 = −2
λ5 = −1

Status: Current iterate is optimal for (EQP).

Release Constraint:
• Pick constraint i with λi < 0 (here i = 3).

• Remove i from working set:
W ←W \ {3} = {5}

• Keep iterate x = (0,2).
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Primal Active-Set QP Solver Iteration 1

(3)

(1)
(2)

(4)

(5)

W = {3,5}
x = (0,2)

xEQP = (0,2)

λ3 = −2
λ5 = −1

Status: Current iterate is optimal for (EQP).

Release Constraint:
• Pick constraint i with λi < 0 (here i = 3).
• Remove i from working set:

W ←W \ {3} = {5}

• Keep iterate x = (0,2).
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Primal Active-Set QP Solver Iteration 1

(3)

(1)
(2)

(4)

(5)

W = {3,5}
x = (0,2)

xEQP = (0,2)

λ3 = −2
λ5 = −1

Status: Current iterate is optimal for (EQP).

Release Constraint:
• Pick constraint i with λi < 0 (here i = 3).
• Remove i from working set:

W ←W \ {3} = {5}
• Keep iterate x = (0,2).
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Primal Active-Set QP Solver Iteration 2

(3)

(1)
(2)

(4)

(5)

W = {5}
x = (2,0)

xEQP = (1,0)

λ5 = −5

Solve (EQP)
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Primal Active-Set QP Solver Iteration 2

(3)

(1)
(2)

(4)

(5)

W = {5}
x = (2,0)

xEQP = (1,0)

λ5 = −5

Status: Current iterate is not optimal for (EQP).

Take step (xEQP is feasible for original QP):
• Update iterate x ← xEQP

• KeepW
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Primal Active-Set QP Solver Iteration 2

(3)

(1)
(2)

(4)

(5)

W = {5}
x = (2,0)

xEQP = (1,0)

λ5 = −5

Status: Current iterate is not optimal for (EQP).

Take step (xEQP is feasible for original QP):
• Update iterate x ← xEQP

• KeepW
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Primal Active-Set QP Solver Iteration 2

(3)

(1)
(2)

(4)

(5)

W = {5}
x = (2,0)

xEQP = (1,0)

λ5 = −5

Status: Current iterate is not optimal for (EQP).

Take step (xEQP is feasible for original QP):
• Update iterate x ← xEQP

• KeepW
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Primal Active-Set QP Solver Iteration 3

(3)

(1)
(2)

(4)

(5)

W = {5}
x = (1,0)

xEQP = (1,0)

λ5 = −5

Solve (EQP)
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Primal Active-Set QP Solver Iteration 3

(3)

(1)
(2)

(4)

(5)

W = {5}
x = (1,0)

xEQP = (1,0)

λ5 = −5

Status: Current iterate is optimal for (EQP)

Release Constraint:
• Pick constraint i with λi < 0 (here i = 5).
• Remove i from working set:

W ←W \ {5} = ∅
• Keep iterate x = (1,0).
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Primal Active-Set QP Solver Iteration 3

(3)

(1)
(2)

(4)

(5)

W = {5}
x = (1,0)

xEQP = (1,0)

λ5 = −5

Status: Current iterate is optimal for (EQP)

Release Constraint:
• Pick constraint i with λi < 0 (here i = 5).

• Remove i from working set:
W ←W \ {5} = ∅

• Keep iterate x = (1,0).
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Primal Active-Set QP Solver Iteration 3

(3)

(1)
(2)

(4)

(5)

W = {5}
x = (1,0)

xEQP = (1,0)

λ5 = −5

Status: Current iterate is optimal for (EQP)

Release Constraint:
• Pick constraint i with λi < 0 (here i = 5).
• Remove i from working set:

W ←W \ {5} = ∅

• Keep iterate x = (1,0).
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Primal Active-Set QP Solver Iteration 3

(3)

(1)
(2)

(4)

(5)

W = {5}
x = (1,0)

xEQP = (1,0)

λ5 = −5

Status: Current iterate is optimal for (EQP)

Release Constraint:
• Pick constraint i with λi < 0 (here i = 5).
• Remove i from working set:

W ←W \ {5} = ∅
• Keep iterate x = (1,0).
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Primal Active-Set QP Solver Iteration 4

(3)

(1)
(2)

(4)

(5)

W = ∅
x = (1,0)

xEQP = (1,2.5)

Solve (EQP)
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Primal Active-Set QP Solver Iteration 4

(3)

(1)
(2)

(4)

(5)

W = ∅
x = (1,0)

xEQP = (1,2.5)

Status: Current iterate not optimal for (EQP)

Take step (xEQP not feasible for original QP):

• Largest α ∈ [0,1]: x + α(xEQP − x) feasible
• Update iterate x ← x + α(xEQP − x)
• UpdateW ←W ∪ {i} = {1}

– where constraint i = 1 is “blocking”
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Primal Active-Set QP Solver Iteration 4

(3)

(1)
(2)

(4)

(5)

W = ∅
x = (1,0)

xEQP = (1,2.5)

Status: Current iterate not optimal for (EQP)

Take step (xEQP not feasible for original QP):

• Largest α ∈ [0,1]: x + α(xEQP − x) feasible
• Update iterate x ← x + α(xEQP − x)
• UpdateW ←W ∪ {i} = {1}

– where constraint i = 1 is “blocking”
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Primal Active-Set QP Solver Iteration 4

(3)

(1)
(2)

(4)

(5)

W = ∅
x = (1,0)

xEQP = (1,2.5)

Status: Current iterate not optimal for (EQP)

Take step (xEQP not feasible for original QP):
• Largest α ∈ [0,1]: x + α(xEQP − x) feasible

• Update iterate x ← x + α(xEQP − x)
• UpdateW ←W ∪ {i} = {1}

– where constraint i = 1 is “blocking”
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Primal Active-Set QP Solver Iteration 4

(3)

(1)
(2)

(4)

(5)

W = ∅
x = (1,0)

xEQP = (1,2.5)

Status: Current iterate not optimal for (EQP)

Take step (xEQP not feasible for original QP):
• Largest α ∈ [0,1]: x + α(xEQP − x) feasible
• Update iterate x ← x + α(xEQP − x)

• UpdateW ←W ∪ {i} = {1}
– where constraint i = 1 is “blocking”
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Primal Active-Set QP Solver Iteration 4

(3)

(1)
(2)

(4)

(5)

W = ∅
x = (1,0)

xEQP = (1,2.5)

Status: Current iterate not optimal for (EQP)

Take step (xEQP not feasible for original QP):
• Largest α ∈ [0,1]: x + α(xEQP − x) feasible
• Update iterate x ← x + α(xEQP − x)
• UpdateW ←W ∪ {i} = {1}

– where constraint i = 1 is “blocking”
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Primal Active-Set QP Solver Iteration 5

(3)

(1)
(2)

(4)

(5)

W = {1}
x = (1,1.5)

xEQP = (1.4,1.7)

λ1 = 0.8

Solve (EQP)
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Primal Active-Set QP Solver Iteration 5

(3)

(1)
(2)

(4)

(5)

W = {1}
x = (1,1.5)

xEQP = (1.4,1.7)

λ1 = 0.8

Status: Current iterate is not optimal for (EQP).

Take step (xEQP feasible for original QP):
• Update iterate x ← xEQP.
• KeepW.
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Primal Active-Set QP Solver Iteration 5

(3)

(1)
(2)

(4)

(5)

W = {1}
x = (1,1.5)

xEQP = (1.4,1.7)

λ1 = 0.8

Status: Current iterate is not optimal for (EQP).

Take step (xEQP feasible for original QP):
• Update iterate x ← xEQP.
• KeepW.
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Primal Active-Set QP Solver Iteration 6

(3)

(1)
(2)

(4)

(5)

W = {1}
x = (1.4,1.7)

xEQP = (1.4,1.7)

λ1 = 0.8

Solve (EQP)
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Primal Active-Set QP Solver Iteration 6

(3)

(1)
(2)

(4)

(5)

W = {1}
x = (1.4,1.7)

xEQP = (1.4,1.7)

λ1 = 0.8

Status: Current iterate is optimal for (EQP)

• λi ≥ 0 for all i ∈ W.
Declare Optimality!
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Primal Active-Set QP Solver Iteration 6

(3)

(1)
(2)

(4)

(5)

W = {1}
x = (1.4,1.7)

xEQP = (1.4,1.7)

λ1 = 0.8

Status: Current iterate is optimal for (EQP)

• λi ≥ 0 for all i ∈ W.

Declare Optimality!
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Primal Active-Set QP Solver Iteration 6

(3)

(1)
(2)

(4)

(5)

W = {1}
x = (1.4,1.7)

xEQP = (1.4,1.7)

λ1 = 0.8

Status: Current iterate is optimal for (EQP)

• λi ≥ 0 for all i ∈ W.
Declare Optimality!
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Primal Active-Set QP Method

1: Select feasible x andW ⊆ I ∩A(x).
2: Solve (EQP) to get xEQP and λEQP.
3: if x = xEQP then
4: If λEQP ≥ 0: STOP: Done!
5: Otherwise, select λEQP

i < 0 and setW ←W \ {i}.
6: else
7: Compute step p = xEQP − x .
8: Compute α = arg max{α ∈ [0,1] : x + αp is feasible}.
9: if α < 1 then

10: Pick i ∈ I \W with aT
i p > 0 and aT

i (x + αp) + bi = 0.
11: SetW ←W ∪ {i}.
12: end if
13: Update x ← x + αp.
14: end if
15: Go to step 2.
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Primal Active-Set QP Algorithms

• Keeps all iterates feasible.
• ChangesW by at most one constraint per iteration.
• {ai}i∈E∪W remain linearly independent.

• Finite convergence:
– Finitely many options forW.
– Objective decreases with every step; as long as α > 0!
– Special handling of degeneracy (α = 0 steps) required

• Efficient solution of (EQP)
– Update the factorization of KKT matrix whenW changes.

• There are variants that allow Q to be indefinite.

• There are other types of active-set methods for QPs.
– Dual, homotopy, simplex-like, . . .
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