Numerical Nonlinear Optimization Part IV

Andreas Wächter

Center for Nonlinear Studies

July 13, 2020

waechter@iems.northwestern.edu

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Book Recommendation

Springer Series in Operations Research

🙆 Springer

Outline

Last week:

- Optimality conditions for constrained optimization.
- Solving quadratic problems with equality constraints
- Solving quadratic problems with inequality constraints

Today:

- Sequential Quadratic Programming
- Interior-Point Methods

Equality-Constrained Nonlinear Problems

$$\begin{array}{|c|c|} \min_{x \in \mathbb{R}^n} f(x) \\ \text{s.t. } c(x) = 0 \end{array} \longrightarrow \qquad \begin{array}{|c|} \nabla f(x) + \nabla c(x)\lambda = 0 \\ c(x) = 0 \end{array}$$

- KKT conditions:
 - System of nonlinear equations in $(x, \lambda) \in \mathbb{R}^n \times \mathbb{R}^{n_E}$.
 - Apply Newton's method: Fast local convergence!
- Issues:
 - We would like to find local minima and not just any stationary point.
 - Newton's method guarantees only local convergence.
 - Need globalization technique.

Newton's Method

$$\nabla f(x) + \nabla c(x)\lambda = 0$$
$$c(x) = 0$$

At iterate (x_k, λ_k) compute step p_k, p_k^{λ} from

Newton's Method

$$\nabla f(x) + \nabla c(x)\lambda = 0$$
$$c(x) = 0$$

At iterate (x_k, λ_k) compute step p_k, p_k^{λ} from

$$\begin{bmatrix} \mathbf{H}_{k} & \nabla c_{k} \\ \nabla c_{k}^{T} & \mathbf{0} \end{bmatrix} \begin{pmatrix} \mathbf{p}_{k} \\ \mathbf{p}_{k}^{\lambda} \\ \mathbf{c}_{k} \end{pmatrix} = - \begin{pmatrix} \nabla \mathbf{f}_{k} + \nabla c_{k} \lambda_{k} \\ c_{k} \end{pmatrix}$$

 $\nabla f_k := \nabla f(x_k)$ $\nabla c_k := \nabla c(x_k)$ $c_k := c(x_k)$

Newton's Method

$$\nabla f(x) + \nabla c(x)\lambda = 0$$
$$c(x) = 0$$

At iterate (x_k, λ_k) compute step p_k, p_k^{λ} from

$$\begin{bmatrix} \mathbf{H}_{k} & \nabla c_{k} \\ \nabla c_{k}^{T} & \mathbf{0} \end{bmatrix} \begin{pmatrix} \mathbf{p}_{k} \\ \mathbf{p}_{k}^{\lambda} \\ \mathbf{c}_{k} \end{pmatrix} = - \begin{pmatrix} \nabla \mathbf{f}_{k} + \nabla c_{k} \lambda_{k} \\ c_{k} \end{pmatrix}$$

$$\nabla f_k := \nabla f(x_k) \qquad \nabla c_k := \nabla c(x_k) \qquad c_k := c(x_k)$$
$$\nabla_x \mathcal{L}(x, \lambda) := \nabla f(x) + \nabla c(x)\lambda \qquad \qquad H_k := \nabla^2_{xx} \mathcal{L}(x_k, \lambda_k)$$

Newton's Method

$$\nabla f(x) + \nabla c(x)\lambda = 0$$
$$c(x) = 0$$

At iterate (x_k, λ_k) compute step p_k, p_k^{λ} from

$$\begin{bmatrix} \mathbf{H}_{k} & \nabla c_{k} \\ \nabla c_{k}^{T} & \mathbf{0} \end{bmatrix} \begin{pmatrix} \mathbf{p}_{k} \\ \mathbf{p}_{k}^{\lambda} \\ \mathbf{c}_{k} \end{pmatrix} = - \begin{pmatrix} \nabla \mathbf{f}_{k} + \nabla c_{k} \lambda_{k} \\ c_{k} \end{pmatrix}$$

• Update iterate $(x_{k+1}, \lambda_{k+1}) = (x_k, \lambda_k) + (p_k, p_k^{\lambda})$

$$\nabla f_k := \nabla f(x_k) \qquad \nabla c_k := \nabla c(x_k) \qquad c_k := c(x_k)$$
$$\nabla_x \mathcal{L}(x, \lambda) := \nabla f(x) + \nabla c(x)\lambda \qquad \qquad H_k := \nabla^2_{xx} \mathcal{L}(x_k, \lambda_k)$$

Sequential Quadratic Programming

$$\begin{bmatrix} \mathbf{H}_{k} & \nabla c_{k} \\ \nabla c_{k}^{T} & \mathbf{0} \end{bmatrix} \begin{pmatrix} \mathbf{p}_{k} \\ \mathbf{p}_{k}^{\lambda} \end{pmatrix} = -\begin{pmatrix} \nabla \mathbf{f}_{k} + \nabla c_{k} \lambda_{k} \\ c_{k} \end{pmatrix}$$

Sequential Quadratic Programming

$$\begin{bmatrix} \mathbf{H}_{k} & \nabla c_{k} \\ \nabla c_{k}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{pmatrix} \mathbf{p}_{k} \\ \lambda_{k} + \mathbf{p}_{k}^{\lambda} \end{pmatrix} = -\begin{pmatrix} \nabla \mathbf{f}_{k} + \nabla e_{k} \lambda_{k} \\ c_{k} \end{pmatrix}$$

Sequential Quadratic Programming

$$\begin{bmatrix} \boldsymbol{H}_{k} & \nabla \boldsymbol{c}_{k} \\ \nabla \boldsymbol{c}_{k}^{T} & \boldsymbol{0} \end{bmatrix} \begin{pmatrix} \boldsymbol{p}_{k} \\ \tilde{\lambda}_{k+1} \end{pmatrix} = -\begin{pmatrix} \nabla \boldsymbol{f}_{k} \\ \boldsymbol{c}_{k} \end{pmatrix}$$

$$\tilde{\lambda}_{k+1} = \lambda_k + \boldsymbol{p}_k^{\lambda}$$

Sequential Quadratic Programming

$$\begin{bmatrix} \boldsymbol{H}_{k} & \nabla \boldsymbol{c}_{k} \\ \nabla \boldsymbol{c}_{k}^{T} & \boldsymbol{0} \end{bmatrix} \begin{pmatrix} \boldsymbol{p}_{k} \\ \tilde{\lambda}_{k+1} \end{pmatrix} = -\begin{pmatrix} \nabla \boldsymbol{f}_{k} \\ \boldsymbol{c}_{k} \end{pmatrix}$$

These are the optimality conditions of the QP

$$\min_{\boldsymbol{p}\in\mathbb{R}^n} \frac{1}{2} \boldsymbol{p}^T \boldsymbol{H}_k \boldsymbol{p} + \nabla \boldsymbol{f}_k^T \boldsymbol{p} + \boldsymbol{f}_k$$

s.t. $\nabla \boldsymbol{c}_k^T \boldsymbol{p} + \boldsymbol{c}_k = 0$

with multipliers $\tilde{\lambda}_{k+1} = \lambda_k + \boldsymbol{p}_k^{\lambda}$

Sequential Quadratic Programming

$$\begin{bmatrix} \boldsymbol{H}_{k} & \nabla \boldsymbol{c}_{k} \\ \nabla \boldsymbol{c}_{k}^{T} & \boldsymbol{0} \end{bmatrix} \begin{pmatrix} \boldsymbol{p}_{k} \\ \tilde{\boldsymbol{\lambda}}_{k+1} \end{pmatrix} = -\begin{pmatrix} \nabla \boldsymbol{f}_{k} \\ \boldsymbol{c}_{k} \end{pmatrix}$$

These are the optimality conditions of the QP

$$\min_{\boldsymbol{p}\in\mathbb{R}^n} \frac{1}{2} \boldsymbol{p}^T \boldsymbol{H}_k \boldsymbol{p} + \nabla \boldsymbol{f}_k^T \boldsymbol{p} + \boldsymbol{f}_k$$

s.t. $\nabla \boldsymbol{c}_k^T \boldsymbol{p} + \boldsymbol{c}_k = 0$

with multipliers $\tilde{\lambda}_{k+1} = \lambda_k + \rho_k^{\lambda}$

- Newton step can be interpreted as solution of a local QP model of the original problem!
- "Sequential Quadratic Programming" (SQP)

Local QP Model

Original Problem (NLP)

 $\min_{x \in \mathbb{R}^n} \frac{f(x)}{c(x)}$ s.t. c(x) = 0

Local QP Model

Original Problem (NLP)
$$\begin{array}{c} \min_{x \in \mathbb{R}^n} f(x) \\ \text{s.t. } c(x) = 0 \end{array}$$

Local QP model (QP_k) $\min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p + f_k$ s.t. $\nabla c_k^T p + c_k = 0$

Regularization

$$\begin{array}{c} \min_{\boldsymbol{\rho}\in\mathbb{R}^{n}} \frac{1}{2} \boldsymbol{\rho}^{T} (\nabla_{\boldsymbol{x}\boldsymbol{x}}^{2} \mathcal{L}_{\boldsymbol{k}} \quad)\boldsymbol{\rho} + \nabla f_{\boldsymbol{k}}^{T} \boldsymbol{\rho} \\ \text{s.t.} \quad \nabla c_{\boldsymbol{k}}^{T} \boldsymbol{\rho} + c_{\boldsymbol{k}} = 0 \end{array} \qquad (\text{QP}_{\boldsymbol{k}})$$
Newton steps:
$$\begin{array}{c} \left[\nabla_{\boldsymbol{x}\boldsymbol{x}}^{2} \mathcal{L}_{\boldsymbol{k}} \quad \nabla c_{\boldsymbol{k}} \\ \nabla c_{\boldsymbol{k}}^{T} & 0 \end{array} \right] \begin{pmatrix} \boldsymbol{\rho}_{\boldsymbol{k}} \\ \tilde{\boldsymbol{\lambda}}_{\boldsymbol{k}+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_{\boldsymbol{k}} \\ c_{\boldsymbol{k}} \end{pmatrix} \\ =: \mathcal{K}_{\boldsymbol{k}} \end{array}$$

• Want ensure that QP has a minimizer.

Regularization

Newton steps:
$$\frac{\min_{p \in \mathbb{R}^{n}} \frac{1}{2} p^{T} (\nabla_{xx}^{2} \mathcal{L}_{k} + \gamma I) p + \nabla f_{k}^{T} p}{\sum_{k=1}^{n} \sum_{k=1}^{n} p^{T} (\nabla_{xx}^{2} \mathcal{L}_{k} + \gamma I) \nabla c_{k} = 0} (QP_{k})$$
$$= K_{k}$$

- Want ensure that QP has a minimizer.
- Choose γ ≥ 0 so that K_k has inertia (n, n_E, 0).
 E.g.: Trial and error, computing inertia via factorization.
- Incentive: Avoid convergence to non-minimizers of (NLP).
- No regularization required close to 2nd-order sufficient minimum.
 - At the end we have unmodified fast Newton steps.
- Other choices than $H_k = \nabla_{xx} \mathcal{L}_k$ possible, e.g., quasi-Newton.

Exact Penalty Function

- Need tool to facilitate convergence from any starting point.
- Here, we have two (usually competing) goals:

Optimality $\min f(x)$

 $\frac{\text{Feasibility}}{\min \|c(x)\|}$

• Combined in (non-differentiable) exact penalty function:

 $\phi_{\rho}(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{x}) + \rho \, \|\boldsymbol{c}(\boldsymbol{x})\|_{1}$

(penalty parameter $\rho > 0$)

Lemma

Suppose, x^* is a local minimizer of (NLP) with multipliers λ^* and LICQ holds. Then x^* is a local minimizer of ϕ_ρ if $\rho > \|\lambda^*\|_{\infty}$.

Penalty Function Example

Los Alamos National Laboratory

Penalty Function Example

Los Alamos National Laboratory

Penalty Function Example

Los Alamos National Laboratory

Descent Direction for Exact Penalty Function

$$\phi_{\rho}(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{x}) + \rho \, \|\boldsymbol{c}(\boldsymbol{x})\|_{1}$$

- We can use reduction of φ_ρ as a measure of progress towards a local minimizer of (NLP).
- Directional derivative of ϕ_{ρ} at x into direction p:

$$D\phi_{\rho}(x;\rho) = \lim_{t \to 0, t > 0} \frac{\phi_{\rho}(x+t \cdot \rho) - \phi_{\rho}(x)}{t}$$

- p is a <u>descent direction</u> at x when $D\phi_{\rho}(x; p) < 0$.
- One (strong) sufficient condition for p_k being descent direction:

 H_k is positive definite and $\rho > \|\tilde{\lambda}_{k+1}\|_{\infty}$.

Basic SQP Algorithm with Line Search

Given: Stopping tolerance $\epsilon > 0$ and parameters $\beta > 0, \eta \in (0, 1)$

- 1: Choose x_0 , λ_0 , and $\rho_{-1} > 0$, and set $k \leftarrow 0$.
- 2: while $\|KKT \operatorname{error}\| > \epsilon$ do
- 3: Solve (QP_k) to get p_k and $\tilde{\lambda}_{k+1}$.
- 4: Update penalty parameter:

$$\rho_{k} = \begin{cases} \rho_{k-1} & \text{if } \rho_{k-1} \geq \|\tilde{\lambda}_{k+1}\|_{\infty} + \beta \\ \|\tilde{\lambda}_{k+1}\|_{\infty} + 2\beta & \text{otherwise.} \end{cases}$$

5: Find largest $\alpha_k \in \{1, \frac{1}{2}, \frac{1}{4}, \ldots\}$ with

 $\phi_{\rho_k}(\mathbf{x}_k + \alpha_k \mathbf{p}_k) \leq \phi_{\rho_k}(\mathbf{x}_k) + \eta \alpha_k \mathbf{D} \phi_{\rho_k}(\mathbf{x}_k; \mathbf{p}_k).$

- 6: Update iterate $x_{k+1} = x_k + \alpha_k p_k$ and $\lambda_{k+1} = \tilde{\lambda}_{k+1}$.
- 7: Increase iteration counter $k \leftarrow k + 1$.
- 8: end while

Convergence Result for Basic SQP Algorithm

Assumptions

- f and c are twice continuously differentiable.
- The matrices H_k are bounded and their smallest eigenvalues are uniformly bounded away from zero.
- The smallest singular value of ∇c_k is uniformly bounded away from zero.

Theorem

Under these assumptions, we have

$$\lim_{k\to\infty} \left\| \begin{pmatrix} \nabla f_k + \nabla c_k \tilde{\lambda}_{k+1} \\ c_k \end{pmatrix} \right\| = 0.$$

So, each limit point of $\{x_k\}$ is a stationary point for (NLP).

Trust-Region SQP Method

$$\begin{array}{c} \min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f_k^T p \\ \text{s.t. } \nabla c_k^T p + c_k = 0, \quad \|p\| \le \Delta_k \end{array} \tag{QP}_k$$

- No positive-definiteness requirements for *H_k*
- Piece-wise quadratic model of $\phi_{\rho}(x) = f(x) + \rho \|c(x)\|_1$:

$$q_k(p) = f_k + \nabla f_k^T p + \frac{1}{2} p^T H_k p + \rho \|c_k + \nabla c_k^T p\|_1$$

• Step p_k is accepted if $ared_k \ge \eta \operatorname{pred}_k$ with $(\eta \in (0, 1))$

 $\operatorname{pred}_k = q_k(0) - q_k(p_k), \quad \operatorname{ared}_k = \phi_\rho(x_k) - \phi_\rho(x_k + p_k)$

• Otherwise, decrease Δ_k

Inconsistent QPs

- If x_k is not feasible and Δ_k small, (QP_k) might not be feasible
- One remedy: Penalize constraint violation in QP objective

$$\min_{\boldsymbol{p} \in \mathbb{R}^{n}; t, s \in \mathbb{R}^{n_{E}}} \frac{1}{2} \boldsymbol{p}^{T} \boldsymbol{H}_{k} \boldsymbol{p} + \nabla \boldsymbol{f}_{k}^{T} \boldsymbol{p} + \rho \sum_{j=1}^{n_{E}} (s_{j} + t_{j})$$
s.t. $\nabla \boldsymbol{c}_{k}^{T} \boldsymbol{p} + \boldsymbol{c}_{k} = \boldsymbol{s} - t$

$$\|\boldsymbol{p}\| \leq \Delta_{k}, \quad \boldsymbol{s}, t \geq 0$$

Fletcher's Sl1QP

$$\min_{\boldsymbol{p} \in \mathbb{R}^{n}; t, s \in \mathbb{R}^{n_{E}}} \frac{1}{2} \boldsymbol{p}^{T} \boldsymbol{H}_{k} \boldsymbol{p} + \nabla f_{k}^{T} \boldsymbol{p} + \rho \sum_{j=1}^{n_{E}} (\boldsymbol{s}_{j} + \boldsymbol{t}_{j})$$
s.t. $\nabla \boldsymbol{c}_{k}^{T} \boldsymbol{p} + \boldsymbol{c}_{k} = \boldsymbol{s} - \boldsymbol{t}$

$$\|\boldsymbol{p}\| \leq \Delta_{k}, \quad \boldsymbol{s}, t \geq 0$$

is equivalent to

$$\min_{\boldsymbol{p}\in\mathbb{R}^n} q_k(\boldsymbol{p}) = f_k + \nabla f_k^T \boldsymbol{p} + \frac{1}{2} \boldsymbol{p}^T \boldsymbol{H}_k \boldsymbol{p} + \rho \|\boldsymbol{c}_k + \nabla \boldsymbol{c}_k^T \boldsymbol{p}\|_1$$

- Natural algorithm for minimizing $\phi_{\rho}(x)$:
 - Compute steps that minimize piece-wise quadratic model q_k .
- Difficulty: Selecting sufficiently large value of ρ.
 - This motivated the invention of *filter methods*.

Maratos Effect

- Even arbitrarily close to solution, full step α = 1 might be rejected because the non-smooth merit function φ_ρ increases.
- Degrades fast local convergence.
- Remedies: Second-order correction steps or "watchdog" method.

SQP For Inequality-Constrained Nonlinear Problems

$$\min_{x\in\mathbb{R}^n}f(x)$$
s.t. $c_E(x)=0$

Compute p_k from local QP model

$$\min_{\boldsymbol{p}\in\mathbb{R}^n} \frac{1}{2} \boldsymbol{p}^T \boldsymbol{H}_k \boldsymbol{p} + \nabla f(\boldsymbol{x}_k)^T \boldsymbol{p}$$

s.t. $\nabla \boldsymbol{c}_E(\boldsymbol{x}_k)^T \boldsymbol{p} + \boldsymbol{c}_E(\boldsymbol{x}_k) = 0$ (QP_k)

SQP For Inequality-Constrained Nonlinear Problems

$$egin{aligned} \min_{x\in\mathbb{R}^n} f(x) \ extsf{s.t. } c_E(x) &= 0 \ c_l(x) &\leq 0 \end{aligned}$$

Compute p_k from local QP model

$$\min_{\boldsymbol{p}\in\mathbb{R}^n} \frac{1}{2} \boldsymbol{p}^T \boldsymbol{H}_k \boldsymbol{p} + \nabla f(\boldsymbol{x}_k)^T \boldsymbol{p}$$

s.t. $\nabla \boldsymbol{c}_E(\boldsymbol{x}_k)^T \boldsymbol{p} + \boldsymbol{c}_E(\boldsymbol{x}_k) = \mathbf{0}$ (QP_k)

SQP For Inequality-Constrained Nonlinear Problems

$$egin{array}{l} \min_{x\in\mathbb{R}^n} f(x) \ extsf{s.t. } c_{\mathcal{E}}(x) = 0 \ c_l(x) \leq 0 \end{array}$$

Compute p_k from local QP model

$$\min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H_k p + \nabla f(x_k)^T p$$
s.t. $\nabla c_E(x_k)^T p + c_E(x_k) = 0$
 $\nabla c_l(x_k)^T p + c_l(x_k) \leq 0$

$$(QP_k)$$

$$egin{aligned} \min_{x\in\mathbb{R}^n} f(x) \ extsf{s.t. } c_i(x) &= 0 \quad i\in\mathcal{E} \ c_i(x) &\leq 0 \quad i\in\mathcal{I} \end{aligned}$$

$$\begin{split} \min_{x \in \mathbb{R}^n} f(x) \\ \text{s.t. } c_i(x) &= 0 \quad i \in \mathcal{E} \\ c_i(x) &\leq 0 \quad i \in \mathcal{A}_*^{\mathsf{NLP}} \\ c_i(x) &\leq 0 \quad i \in \overline{\mathcal{A}}_*^{\mathsf{NLP}} \end{split}$$

$$\mathcal{A}^{\mathsf{NLP}}_* = \{i \in \mathcal{I} : c_i(x^*) = 0\} \qquad \overline{\mathcal{A}}^{\mathsf{NLP}}_* = \{i \in \mathcal{I} : c_i(x^*) < 0\}$$

 $\min_{x \in \mathbb{R}^n} f(x)$ s.t. $c_i(x) = 0 \quad i \in \mathcal{E}$ $c_i(x) = 0 \quad i \in \mathcal{A}_*^{\mathsf{NLP}}$ $c_i(x) \leq 0 \quad i \in \overline{\mathcal{A}}_*^{\mathsf{NLP}}$

$$\mathcal{A}^{\mathsf{NLP}}_* = \{i \in \mathcal{I} : c_i(x^*) = 0\} \qquad \overline{\mathcal{A}}^{\mathsf{NLP}}_* = \{i \in \mathcal{I} : c_i(x^*) < 0\}$$

• Same solution if treat active c_i as equality and ignore inactive c_i .

Local Behavior

 $\min_{x \in \mathbb{R}^n} f(x)$ s.t. $c_i(x) = 0 \quad i \in \mathcal{E}$ $c_i(x) = 0 \quad i \in \mathcal{A}_*^{\mathsf{NLP}}$ $\underline{c_i(x)} \leq 0 \quad i \in \overline{\mathcal{A}}_*^{\mathsf{NLP}}$

$$\min_{\boldsymbol{p}\in\mathbb{R}^{n}} \frac{1}{2}\boldsymbol{p}^{T}\boldsymbol{H}_{k}\boldsymbol{p} + \nabla\boldsymbol{f}_{k}^{T}\boldsymbol{p}$$

s.t. $\nabla\boldsymbol{c}_{k,i}^{T}\boldsymbol{p} + \boldsymbol{c}_{k,i} = 0 \quad i \in \mathcal{E}$
 $\nabla\boldsymbol{c}_{k,i}^{T}\boldsymbol{p} + \boldsymbol{c}_{k,i} = 0 \quad i \in \mathcal{A}_{*}^{\mathrm{QP}_{k}}$
 $\nabla\boldsymbol{c}_{k,i}^{T}\boldsymbol{p} + \boldsymbol{c}_{k,i} \leq 0 \quad i \in \overline{\mathcal{A}}_{*}^{\mathrm{QP}_{k}}$

$$\mathcal{A}^{\mathsf{NLP}}_* = \{i \in \mathcal{I} : c_i(x^*) = 0\} \qquad \overline{\mathcal{A}}^{\mathsf{NLP}}_* = \{i \in \mathcal{I} : c_i(x^*) < 0\}$$

• Same solution if treat active c_i as equality and ignore inactive c_i .

 $\min_{x \in \mathbb{R}^n} f(x)$ s.t. $c_i(x) = 0$ $i \in \mathcal{E}$ $c_i(x) = 0$ $i \in \mathcal{A}_*^{\mathsf{NLP}}$ $c_i(x) \leq 0$ $i \in \overline{\mathcal{A}}_*^{\mathsf{NLP}}$

$$\min_{\boldsymbol{p}\in\mathbb{R}^{n}} \frac{1}{2} \boldsymbol{p}^{T} \boldsymbol{H}_{k} \boldsymbol{p} + \nabla \boldsymbol{f}_{k}^{T} \boldsymbol{p}$$

s.t. $\nabla \boldsymbol{c}_{k,i}^{T} \boldsymbol{p} + \boldsymbol{c}_{k,i} = 0 \quad i \in \mathcal{E}$
 $\nabla \boldsymbol{c}_{k,i}^{T} \boldsymbol{p} + \boldsymbol{c}_{k,i} = 0 \quad i \in \mathcal{A}_{*}^{\mathrm{QP}_{k}}$
 $\nabla \boldsymbol{c}_{k,i}^{T} \boldsymbol{p} + \boldsymbol{c}_{k,i} \leq 0 \quad i \in \overline{\mathcal{A}}_{*}^{\mathrm{QP}_{k}}$

 $\mathcal{A}^{\mathsf{NLP}}_* = \{i \in \mathcal{I} : c_i(x^*) = 0\} \qquad \overline{\mathcal{A}}^{\mathsf{NLP}}_* = \{i \in \mathcal{I} : c_i(x^*) < 0\}$

• Same solution if treat active c_i as equality and ignore inactive c_i.

Lemma

Suppose x^* is a local minimizer satisfying the sufficient second-order optimality conditions, at which LICQ and strict complementarity hold. Then $\mathcal{A}_*^{\mathsf{NLP}} = \mathcal{A}_*^{\mathsf{QP}_k}$ for all x_k sufficiently close to x_* .

Back to Newton's Method

$$\min_{x \in \mathbb{R}^n} f(x)$$
s.t. $c_i(x) = 0$ $i \in \mathcal{E}$

$$c_i(x) = 0$$
 $i \in \mathcal{A}_*^{\text{NLP}}$

$$c_i(x) \leq 0$$
 $i \in \overline{\mathcal{A}}_*^{\text{NLP}}$

$$\begin{split} \min_{p \in \mathbb{R}^{n}} \frac{1}{2} p^{T} H_{k} p + \nabla f_{k}^{T} p \\ \text{s.t.} \ \nabla c_{k,i}^{T} p + c_{k,i} = 0 \quad i \in \mathcal{E} \\ \nabla c_{k,i}^{T} p + c_{k,i} = 0 \quad i \in \mathcal{A}_{*}^{\text{NLP}} \\ \hline \nabla c_{k,i}^{T} p + c_{k,i} \leq 0 \quad i \in \overline{\mathcal{A}}_{*}^{\text{NLP}} \end{split}$$

- When x_k is close to x^{*}, (QP_k) produces the same steps as SQP for equality-constrained NLP.
- We are back to Newton's method...
- Fast local convergence!

Global Convergence

$$\min_{\substack{x \in \mathbb{R}^n}} f(x)$$

s.t. $c_E(x) = 0$
 $c_l(x) \le 0$

Globalization methods for equality constraints can be generalized.

• For example, penalty function

$$\phi_{\rho}(x) = f(x) + \rho \|c_{E}(x)\|_{1} + \rho \|\max\{c_{I}(x), 0\}\|_{1}.$$

$$\min_{\boldsymbol{p} \in \mathbb{R}^{n}; t, s \in \mathbb{R}^{n_{E}}; \boldsymbol{r} \in \mathbb{R}^{n_{I}}} \frac{1}{2} \boldsymbol{p}^{T} \boldsymbol{H}_{k} \boldsymbol{p} + \nabla \boldsymbol{f}_{k}^{T} \boldsymbol{p} + \rho \sum_{j=1}^{n_{E}} (\boldsymbol{s}_{j} + \boldsymbol{t}_{j}) + \rho \sum_{j=1}^{n_{I}} \boldsymbol{r}_{j}$$
s.t. $\nabla \boldsymbol{c}_{E,k}^{T} \boldsymbol{p} + \boldsymbol{c}_{E,k} = \boldsymbol{s} - \boldsymbol{t}$
 $\nabla \boldsymbol{c}_{E,k}^{T} \boldsymbol{p} + \boldsymbol{c}_{E,k} \leq \boldsymbol{r}$
 $\|\boldsymbol{p}\| \leq \Delta_{k}, \quad \boldsymbol{s}, \boldsymbol{t}, \boldsymbol{r} \geq \boldsymbol{0}$

Conclusion SQP Methods

- Solve inequality-constrained QP in each iteration
- Active-set QP solver needs to identify optimal active set.
 - Combinatorial problem.
 - Too time consuming for large-scale problems.
- Exact penalty function ("merit function") measures progress.
- Several globalization techniques:
 - Line search
 - Trust region
- Can exploit good initial guess of active set and optimal solution.
 - SQP methods can be warm-started well.
 - For example: Important for real-time optimal control.
- Many variants:
 - Several choices for Hessian matrix *H_k* possible, incl. quasi-Newton.
 - Decomposition-based versions can exploit problem structure.

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$
 $x \ge 0$

Interior Point Methods: Barrier Problem

$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t. } c(x) = 0}} f(x)$$

$$\min_{x \in \mathbb{R}^n} f(x) - \mu \sum_{i=1}^n \log(x_i)$$

s.t. $c(x) = 0$

• $\mu > 0$: Barrier parameter.

Interior Point Methods: Barrier Problem

Los Alamos National Laboratory

Barrier Method

$$\begin{array}{c|c}
\min_{x \in \mathbb{R}^n} f(x) \\
\text{s.t. } c(x) = 0 \\
x \ge 0
\end{array} \longrightarrow \qquad \begin{array}{c}
\min_{x \in \mathbb{R}^n} f(x) - \mu \sum_{i=1}^n \log(x_i) \\
\text{s.t. } c(x) = 0
\end{array} (BP_{\mu})$$

Basic Interior Point Method:

Given: Final barrier parameter $\bar{\mu} > 0$.

1: Choose
$$x_0 \in \mathbb{R}^n$$
, $\mu_0 > 0$, $\epsilon_0 > 0$. Set $k \leftarrow 0$.

2: while
$$\mu_k > \bar{\mu}$$
 do

- 3: Starting from x_k , solve (BP_{μ_k}) to tolerance ϵ_k and obtain x_{k+1} .
- 4: Decrease $\mu_{k+1} < \mu_k$ and $\epsilon_{k+1} < \epsilon_k$.
- 5: Increase iteration counter $k \leftarrow k + 1$.
- 6: end while

Solving the Barrier Problem

$$\begin{array}{c} \min_{x \in \mathbb{R}^n} f(x) - \mu \sum_{i=1}^n \log(x_i) \\ \text{s.t. } c(x) = 0 \end{array} \quad (\mathsf{BP}_\mu)$$

- (BP_{μ}) is an equality constrained problem.
 - Can use SQP techniques!
- Step computation:
 - KKT system with regularization
 - Decomposition
- Globalization strategy:
 - Line search
 - Trust region

Barrier Term Considerations

$$\min_{x \in \mathbb{R}^n} f(x) - \mu \sum_{i=1}^n \log(x_i)$$

s.t. $c(x) = 0$

- For \log , x_k must stay positive.
 - Fraction-to-the-boundary rule:

(
$$au \in$$
 (0, 1), e.g., $au =$ 0.99)

 $\alpha_k^{\max} = \arg \max \left\{ \alpha \in (0, 1] : x_k + \alpha p_k \ge (1 - \tau) x_k \right\}$

- Largest step (with margin) without leaving x > 0.
- Ill-conditioning in SQP step computation: $(X_k = diag(x_k))$

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} + \mu X_{k}^{-2} & \nabla c_{k} \\ \nabla c_{k}^{T} & 0 \end{bmatrix} \begin{pmatrix} \rho_{k} \\ \tilde{\lambda}_{k+1} \end{pmatrix} = -\begin{pmatrix} \nabla f_{k} - \mu X_{k}^{-1} e \\ c_{k} \end{pmatrix}$$

• Several iterations per barrier parameter μ_k ; slow convergence.

Primal-Dual System

$$egin{array}{c} \min_{x\in\mathbb{R}^n} f(x) \ {
m s.t.} \ c(x) = 0 \ x\geq 0 \end{array} \qquad \stackrel{{
m KKT}}{\longrightarrow}$$

$$abla f(x) +
abla c(x) \lambda - z = 0$$
 $c(x) = 0$
 $XZe = 0$
 $x, z \ge 0$

 $X = \operatorname{diag}(x), Z = \operatorname{diag}(z), e = (1, \ldots, 1)^T$

Primal-Dual System

$$egin{array}{c} \min_{x\in\mathbb{R}^n} f(x) \ {
m s.t.} \ c(x) = 0 \ x\geq 0 \end{array} \qquad \stackrel{{
m KKT}}{
m \ \ }$$

$$abla f(x) +
abla c(x)\lambda - z = 0$$
 $c(x) = 0$
 $XZe = \mu e$
 $(x, z > 0)$

 $X = \operatorname{diag}(x), Z = \operatorname{diag}(z), e = (1, \ldots, 1)^T$

Primal-Dual System

$$\begin{array}{c|c} \min_{x \in \mathbb{R}^n} f(x) \\ \text{s.t. } c(x) = 0 \\ x \ge 0 \end{array} \quad \stackrel{\text{KKT}}{\longrightarrow} \quad \begin{array}{c|c} \nabla f(x) + \nabla c(x)\lambda - z = 0 \\ c(x) = 0 \\ XZe = \mu \\ (x, z > 0) \end{array}$$

Newton Steps for perturbed KKT conditions:

$$\begin{bmatrix} \nabla_{XX}^2 \mathcal{L}_k & \nabla \boldsymbol{c}_k & -\boldsymbol{I} \\ \nabla \boldsymbol{c}_k^T & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{Z}_k & \boldsymbol{0} & \boldsymbol{X}_k \end{bmatrix} \begin{pmatrix} \boldsymbol{p}_k \\ \boldsymbol{p}_k^\lambda \\ \boldsymbol{p}_k^2 \end{pmatrix} = - \begin{pmatrix} \nabla f_k + \nabla \boldsymbol{c}_k \lambda_k - \boldsymbol{z}_k \\ \boldsymbol{c}_k \\ \boldsymbol{X}_k \boldsymbol{Z}_k \boldsymbol{e} - \mu \boldsymbol{e} \end{pmatrix}$$

Block elimination leads to

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} + X_{k}^{-1} Z_{k} & \nabla c_{k} \\ \nabla c_{k}^{T} & 0 \end{bmatrix} \begin{pmatrix} p_{k} \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_{k} - \mu X_{k}^{-1} e \\ c_{k} \end{pmatrix}$$

c(x) = 0 $XZe = \mu e$ (x, z > 0)

Primal-Dual Steps

$$\begin{bmatrix} \nabla_{xx}^{2} \mathcal{L}_{k} + \sum_{k} & \nabla c_{k} \\ \nabla c_{k}^{T} & 0 \end{bmatrix} \begin{pmatrix} p_{k} \\ \tilde{\lambda}_{k+1} \end{pmatrix} = - \begin{pmatrix} \nabla f_{k} - \mu X_{k}^{-1} e \\ c_{k} \end{pmatrix}$$
$$p_{k}^{z} = \mu X_{k}^{-1} e - z_{k} - \sum_{k} p_{k}$$

- Primal and primal-dual version solve very similar linear system.
- Barrier Hessian term:

-
$$\Sigma_k = X_k^{-2}$$
: primal

- $-\Sigma_k = X_k^{-1} Z_k$: primal-dual
- Primal-dual perspective: Homotopy method, follow "central path".
 - Now fast local convergence.
- Primal perspective: Can use SQP-type globalization techniques.
- Ill-conditioning is benign for direct symmetric linear solvers.

Example Revisited with Primal-Dual Method

Example Revisited with Primal-Dual Method

Example Revisited with Primal-Dual Method

• One iteration per μ_k , superlinear convergence.

Conclusion Interior-Point Methods

- Two perspectives:
 - Primal: Solve sequence of barrier problems with SQP method.
 - Exploit existing globalization techniques.
 - Primal-dual: Homotopy following central path.
 - Fast local convergence.
- Avoids combinatorial complexity of identifying active set.
- Can solve very large-scale problems (billions of variables).
- Difficult to warm-start:
 - Starting point has to be in the interior.
 - Need to move starting point away from boundary.
 - Cannot exploit knowledge of starting point very close to solution.
 - Needs a good number of iterations even when starting point is optimal.

Thank You!