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From thermodynamic origins, the concept of
entropy has expanded to a range of statistical
measures of uncertainty, which may still be ther-
modynamically significant[1, 2]. But, labora-
tory measurements of entropy continue to rely
on direct measurements of heat. New technolo-
gies that can map out myriads of microscopic
degrees of freedom suggest direct determination
of configurational entropy by “counting” in sys-
tems where it is thermodynamically inaccessible,
such as granular[3–8] and colloidal[9–13] materi-
als, proteins[14] and lithographically fabricated
nanoscale arrays. Here, we demonstrate a condi-
tional probability technique to calculate entropy
densities of translation-invariant states on lattices
using limited configuration data on small clusters,
and apply it to arrays of interacting nanoscale
magnetic islands (“artificial spin-ice”[15]). Mod-
els for statistically disordered systems can be as-
sessed by applying the method to relative en-
tropy densities. For artificial spin-ice, this analy-
sis shows that nearest neighbor correlations drive
longer-range ones.

Our artificial spin ice[15] systems are arrays of litho-
graphically defined single-domain ferromagnetic islands
(25 nm thick and 220 nm × 80 nm in area) on the
links of square and honeycomb lattices (Fig. 1). Shape
anisotropy forces island moments to point along the long
axes, forming effective Ising spins. The coercive field
is about 770 Oe (i.e., a barrier of order 105 K), while
the field from one island on a neighbor only of order 10
Oe (104 K). The arrays are demagnetized by rotating in
an in-plane external magnetic field Hext, initially strong
enough to produce complete polarization, subsequently
reduced to zero in small increments[15, 16] ∆Hext, with
reversal of the field at each step. For small step sizes, the
result is a statistically reproducible macrostate, opera-
tionally defined by the demagnetization protocol[15, 16],
which is probed by magnetic force microscopy to obtain
the static moments of individual islands. We want the en-
tropy of a single macrostate, but distinct runs might pro-
duce distinct macrostates (for example, a residual mag-
netization at larger step size). In most cases, data are

FIG. 1: Artificial spin-ice arrays. a. AFM image of
400 nm square lattice with inset showing lattice spacing, and
schematics of vertex types. b. Similarly for 520 nm honey-
comb lattice.

collected in a single run, averting the problem, but the
entropy of macrostate mixture would be relatively unim-
portant anyway, as is shown in Supplementary Informa-
tion §3. For large structurally regular systems such as
ours, it is more appropriate to work not with total en-
tropy, but with entropy density [See Eq. (2)] having units
of bits/island, a value of 1 corresponding to complete dis-
order.

The strongest interactions, between islands meeting
at a vertex, favor head-to-tail moment alignment. But
not all these can be satisfied simultaneously, resulting
in a kind of frustration. Still, for the square lattice,
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the ground state is only two-fold degenerate[15], since
Type-I vertices, as defined in Fig. 1, are lowest in en-
ergy. That the ordered ground state is never found
experimentally[16, 17] suggests that the evolution is ki-
netically constrained[18, 19]. For instance, one spin flip
converts a Type-II to a Type-III; flips of two perpendic-
ular islands are required to reach Type-I. In contrast to
the square lattice, the honeycomb lattice has a macro-
scopically degenerate ground state when only nearest or
next-nearest neighbor interactions are effective (longer-
range interactions break the degeneracy[20] at a much
lower energy scale). The interactions prefer a 2-in/1-
out or 1-in/2-out arrangement at every vertex (“quasi-
ice rule”). This constraint alone produces a state, ideal
quasi-ice, with an entropy density of 0.724 bits/island.
Interaction between (mono)pole-strengths Q at neighbor-
ing vertices[21, 22] reduce the ground state degeneracy
to 0.15 bits/island by favoring Q = −1 (2-in/1-out) next
to Q = +1. The contrast between the square and honey-
comb lattice ground states – two-fold degenerate versus
macroscopically degenerate – provides an opportunity to
investigate the interplay between the strictures of kinetic
constraint and the freedom of massive degeneracy.

We now develop a method to extract the entropy den-
sities on our lattices from the measured configurations of
the island magnetic moments. Consider a finite cluster
Λ of islands, for example, the 5-island cluster comprising
two adjacent vertices (See Fig. 2 legend) and the collec-
tion of random variables σΛ which are the spins belonging
to Λ. The Shannon(-Gibbs-Boltzmann) entropy[23–25]
of PΛ(σΛ), the distribution of σΛ, is

S(PΛ) = −
∑

σΛ

P(σΛ)log2P(σΛ), (1)

where the sum runs over all possible values of the random
variable(s) σΛ. Note that S is rendered dimensionless
by omitting Boltzmann’s constant, and the base of the
logarithm is 2, so that the units are bits. If Λ is taken ever
larger while the fraction of islands on the edge tends to
zero (van Hove limit), we obtain the bulk entropy density
s:

s = lim
Λ↗∞

S(PΛ)

|Λ|
. (2)

If each island moment independently points either way
with probability 1/2, then the entropy density is one bit
per island, the largest possible. Lower entropy density
indicates correlations in a generic sense. For example,
the fully-polarized initial state created by a large Hext

has zero entropy density.
The obvious approximation to s suggested by Eq. (2)

is simply S(PΛ)/|Λ| for the biggest practicable cluster.
But this “simple cluster-estimate” is not very good be-
cause the configuration space grows exponentially with
cluster size |Λ|, while boundary-crossing correlations are

completely neglected. To understand the latter point,
suppose the entire lattice covered without gaps or over-
lap by translates of Λ. The state constructed from the
marginals of P on those translates, taking them indepen-
dent, has entropy density exactly S(PΛ)/|Λ|. However,
short-range boundary-crossing correlations are the same
as corresponding intra-cluster correlations, so are re-
flected in small-cluster data and can be properly counted
using conditional entropy. The method resembles one
proposed some years ago[26, 27] for Monte Carlo simula-
tions of lattice spin models in equilibrium.

One way to think of the total entropy of a given
macrostate is as the average uncertainty about the par-

ticular microstate at hand. Imagine a microstate of
the honeycomb lattice revealed three islands (one ver-
tex) at a time, row-by-row. One instant in the pro-
cess looks like this (the grey vertex is about to be re-

vealed): Neglecting the (far

distant) lattice edge, each newly revealed vertex bears
the same spatial relation to those already known, so the
revelation, on average, reduces the uncertainty by exactly
3 times the entropy per spin. Cast this way, the entropy
density appears as a conditional entropy [28]. The con-
ditional entropy of σΛ given σΓ is

S(σΛ|σΓ) = −
∑

σΛ,σΓ

P(σΛ, σΓ) log2 P(σΛ|σΓ), (3)

where P(σΛ|σΓ) = P(σΛ, σΓ)/P(σΓ) is the conditional
probability of σΛ given σΓ. The joint entropy of σΛ

and σΓ then has the pleasant decomposition S(σΛ, σΓ) =
S(σΛ|σΓ) + S(σΓ). (Learning σΓ and σΛ at once is the
same as learning σΓ and then σΛ.) Note that if Λ and Γ
overlap, common spins contribute zero to S(σΛ|σΓ).

As a simple illustration, suppose Λ and Γ are single
islands, with the probabilities for P (σΛ, σΓ) being given
by P(↓, ↑) = 0 and P(↑, ↑) = P(↑, ↓) = P(↓, ↓) = 1/3.
If we know that σΓ =↑, then the remaining uncertainty
about σΛ is zero, but if we know that σΓ =↓, then the
uncertainty is total: 1 bit. Weighting by the probabilities
of σΓ to be ↑ or ↓ gives the entropy of σΛ conditioned on
σΓ: P(σΓ =↑) · (0) + P(σΓ =↓) · (1) = 2/3 bit.

The Methods section explains how conditional entropy
and other basic notions of information theory can be used
to obtain good approximations to the entropy density s
from limited data. The result of applying two such ap-
proximations to the experimental data for honeycomb
lattices are plotted in Fig. 2 as a function of field step
size ∆Hext for each lattice constant, along with one sim-
ple cluster-estimate for comparison. Data-set sizes are
reported in Supplementary Information §1. The simple
cluster-estimate S(Λ)/|Λ| using the five-island di-vertex
(Fig. 2 legend) provides a very poor bound compared to
our conditioning technique. Reducing lattice constant or



3

0 5 10 15 20

0.75

0.80

0.85

0.90

field step size (Oe)

en
tro

py
 p

er
 is

la
nd

 (b
its

)

520 nm
600 nm

739 nm

981 nm

quasi-ice

1
5S

1
3S

1
3S

+ 1
3S

FIG. 2: Entropy density upper bounds for honeycomb
artificial spin ice at four lattice constants as a func-
tion of the demagnetization step size ∆Hext. All bounds
are derived using configuration statistics for the 5-island clus-
ter Λ5 shown in the inset. Crosses are the direct estimate
S(Λ5)/5, while filled diamonds use inequality (7) and open
circles use inequality (5). The dashed lines are the result of
our technique applied to ideal quasi-ice (every vertex Type-I
with no other restrictions), the upper from the simple cluster-
estimate, and the lower two (indistinguishable) from the two
conditioning approximations. The simple cluster-estimate ap-
plied to a single vertex would give 0.86 bit/island. The solid
line at 0.724 shows the actual entropy density of ideal quasi-
ice. At the smallest lattice constants and smallest step sizes,
subtle signs of longer-ranged monopole correlations appear.

step size should lower the entropy since the first leads to
stronger interactions, and the second gives interactions
a better chance to be the decisive factor for island flips.
The expected lattice constant trend is seen but there is
an unexpected plateau with respect to ∆Hext.

It makes sense to compare the experimental states
to ideal honeycomb quasi-ice through entropy densities.
That of honeycomb quasi-ice is 0.724 bit/island (Sup-
plementary Information §2). But proper comparison re-
quires using the same estimates for both systems. Dashed
lines in the plot show the estimates for the model sys-
tem, the upper for the simple cluster-estimate (com-
pare crosses) and the lower two (indistinguishable) for
the conditioning estimates. Hence, the 520 nm array at
∆Hext = 1.6 Oe has less entropy than ideal quasi-ice.
This can be explained by correlations between net mag-
netic charge Q = ±1 of nearest-neighbor vertices. Ideal
quasi-ice has a weak anticorrelation: 〈QiQj〉 ≈ −1/9.
In some samples, this correlation reaches -0.25, reflected
in a small entropy decrease. Complete sublattice order-
ing, 〈QiQj〉 = −1, would reduce the entropy to s ≈ 0.15
bit/island (Supplementary Information §2). This extra
correlation may explain the slightly better performance
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FIG. 3: Entropy density upper bounds for square lat-
tice artificial spin ice. The three approximations agree
closely. Even extrapolated to zero step size, AC demagne-
tized square spin ice never approaches the ground state. The
diamond estimate is always lower than the square because the
former retains more conditioning, whereas the added islands
are the same. Dataset sizes are reported in Supplementary
Information.

of the bound with a complete vertex in the conditioning
data.

The entropy of honeycomb artificial spin ice reveals a
state close to ideal quasi-ice, with slight antiferromag-
netic vertex charge ordering. The contrasting failure of
AC demagnetization of the square lattice to approach
the completely ordered ground state is precisely quan-
tified by entropy. We use three approximations (upper
bounds) for the square lattice entropy density. They are
found by a procedure parallel to that for the honeycomb
lattice and are shown in the legend of Fig. 3. The three
agree well, and this rough convergence test suggests that
they are close to the true entropy densities. As for the
honeycomb lattice, we expect smaller entropy for smaller
∆Hext or smaller lattice spacing. In general, this seems
to be the case, but the ground state is never approached.
Even extrapolations ∆Hext → 0 have large entropy den-
sities.

Closer inspection suggests jamming at ∆Hext. Kinet-
ically constrained approach to ground states defines be-
havior of complex systems across many fields[19], such
as protein folding[14], self-assembly, glasses and granular
systems[3–8]. Ergodicity is thwarted by both tall energy
barriers and configuration space constrictions, combined
into free energy barriers. An ergodic system explores
all of configuration space, whereas folding proteins live
within a “folding funnel.” This dynamic constriction of
allowed configurations introduces many deep conceptual
challenges. AC demagnetized artificial spin ice puts the
conceptual challenge of kinetic constraint into sharp re-
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lief: as the rotating external field weakens, islands one-
by-one fall out of “field-following” mode, driven by inter-
island interactions that suppress the local depolarization
field and lock in the orientation of the fallen-away island.
Thus each spin likely makes only a single decision on
how to point upon escaping coercion, with no prospect
of later surmounting barriers. The system’s approach
to the ground state is essentially one-way. Thus it is not
surprising that only a macroscopically degenerate ground
state target can be “hit.” Notwithstanding this failure of
ergodicity, square-lattice artificial spin ice can still be de-
scribed by a statistical model based, like thermodynam-
ics, on maximum entropy[16, 17]. As an extreme case
of kinetic constraint, rotationally annealed artificial spin
ice can afford unique insights into statistical mechanics
of complex systems. For example, array topology can
control the ground-state degeneracy, as seen here.

Even without detailed knowledge of how the final
square lattice states develop, a concisely descriptive
model may be sought. We conjecture that the lattice
state is fully determined by correlations between nearest-
neighbor pairs diagonally, or straight, across a vertex,
and thus model it by a constrained maximum entropy
state, which is as random as possible, consistent with
those correlations. Adapting the conditioning techniques
(see Methods section), we can efficiently estimate the
entropy density of the experimental states relative to
the maximum entropy state, s(expt||ME). This global
measure of dissimilarity does not depend on identifying
the “right” correlations, and allows an assessment of the
model. Results are given in the following table.

s(expt||ME) (10−3 bit/island)

lattice (nm) ∆Hext (Oe)

1.6 3.2 9.6 12.8 16

400 5.1 4.2 13.5 2.9 9.2

680 4.5 5.6 9.1 5.4 5.0

880 4.4 16.1 7.9 1.4 2.6

Note that[29] the probability that a typical exper-
imental state in region Λ is likely to be mistaken
for a maximum entropy state decays asymptotically as
exp[−|Λ|s(expt||ME)]. Apparently, the entropy reduc-
tion below independent islands in the square lattices is
well accounted for by nearest-neighbor correlations, and
those they entail.

The reduction in the entropy of an interacting sys-
tem below that of uncoupled degrees of freedom is due
mostly to short-range correlations, even near a critical
point. Thus, the efficient conditional entropy technique
described here can be applied to a wide variety of resolv-
able complex systems such as granular media and col-
loidal systems which can now be spatially resolved in
the required detail [9–13]. Entropy density is a general
measure of order which is not tied to pre-identified corre-
lations. Hence it is especially valuable for states such as

square ice or other jammed, glassy states which are far
from identifiable landmarks.

METHODS

According to the discussion around Eq. (3), the en-
tropy density s of the infinite honeycomb lattice is given
by (ignore the color for now)

3s = S

(4)

Now we find small-cluster approximations to this entropy
density, using two principles[28]. (A) If σΓ is known there
is no uncertainty about it, so S(σΛ, σΓ|σΓ) = S(σΛ|σΓ)
for arbitrary Λ and Γ. Thus, in pictorial equations, vi-
sual perspicuity will dictate retention or omission of con-
ditioning variables on the left of the bar. (B) Provid-
ing more conditioning information lessens uncertainty:
S(σΛ|σΓ) ≥ S(σΛ|σΓ, σΓ′). Unlike a simple application
of Eqn. (2), our conditional entropy method fully ac-
counts for short-range correlations without boundary er-
ror. Like the simple cluster-estimate, it provides upper
bounds on the true entropy density. Dropping all but the
red islands in Eqn. (4) yields

3s ≤ S
(5)

Alternatively, if we add a vertex in two stages rather than
all at once as in Eq. (4), we immediately arrive at

3s = S

+S
(6)

The red islands again provide a visual cue. Following it,
we get the bound

3s ≤ S +S
(7)

Bounds for a translation-invariant state on the square
lattice can be obtained in a similar way. We use the
one-step bounds

2s ≤ S
(8)
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and

2s ≤ S
(9)

and the two-step bound

2s ≤ S +S
(10)

A constrained maximum entropy state on the square
lattice with given correlations between diagonal and
accross-the-vertex nearest neighbor correlations coincides
with a Gibbs state for an Ising model with effective pair
interactions for the two types of nearest neighbors of
whatever strength is required to reproduce the required
correlations. We have previously[16] studied specific pair
correlations in such maximum entropy states using Monte
Carlo simulation. Building on the conditioning tech-
niques developed in this Letter, we compute s(expt||ME),
the relative entropy density of an experimental state to
the corresponding constrained maximum entropy state.
In the case of two probability measures on the configu-
ration space of a lattice system, the relative entropy of
their restrictions to some finite region Λ is

S(QΛ||PΛ) =
∑

σΛ
log2

(

Q(σΛ)
P (σΛ)

)

Q(σΛ)

=
〈

log2 QΛ

〉

Q
−

〈

log2 PΛ

〉

Q
. (11)

The limiting relative entropy density which we want is

s(QΛ||PΛ) = lim
Λ↗∞

|Λ|−1S(QΛ||PΛ). (12)

The logarithm of the probability in Eq. (11) can be ex-
panded in terms of conditionals just as was done for the
entropy. For any collection {X1, . . . , XN} of random vari-
ables (the m = 1 term being read as an unconditioned
probability),

log2 P (XN , . . . , X1) =
N

∑

m=1

log2 P (Xm|Xm−1, . . . , X1)

parallels exactly the formula

S(XN , . . . , X1) =
N

∑

m=1

S(Xm|Xm−1, . . . , X1).

The main difference is that log2 P (·) is a random variable,
whereas S(·) is a number. Any of the class of approxi-
mations for the conditional entropy densities can now be
applied to the conditional probabilities to obtain the rel-
ative entropy. However, we do not get bounds in this
way, just ordinary estimates.

If PME is a maximum entropy state constrained to
have expectations of specified observables match their

expectations in P , then the relative entropy density
s(P ||PME) ought to equal the difference in the absolute
densities. We believe that the method we have used is
superior to this simple subtraction because it suppresses
the unwanted effects of fluctuations in the counting of
low-probability configurations. Due to limited experi-
mental data, configurations which would be expected to
have only a few occurences may have none at all, which
has an anomalously large effect in the subtraction.
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