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While the statics of many simple physical systems reproduce the striking number-theoretical patterns

found in the phyllotaxis of living beings, their dynamics reveal unusual excitations: multiple classical

rotons and a large family of interconverting topological solitons. As we introduce those, we also

demonstrate experimentally for the first time Levitov’s celebrated model for phyllotaxis. Applications

at different scales and in different areas of physics are proposed and discussed.
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Phyllotaxis, the study of mathematical regularities in
plants, challenged Kepler and da Vinci [1], inspired the
Bravais lattice of crystallography [2], and may well have
motivated humanity’s first mathematical inquiries [1]. In
ground-breaking work, Levitov proposed [3] that the ap-
pearance of the Fibonacci sequence and golden mean in the
disposition of spines on a cactus is replicated in physics, in
the statics of cylindrically constrained, repulsive objects
[3]. Here we prove experimentally Levitov’s model and
describe for the first time the intriguing collective excita-
tions of the phyllotactic geometry: multiple classical ro-
tons and a huge family of interconverting topological
solitons. A simple geometrical mismatch underpins all of
these phenomena: nearest neighbors in one dimension (i.e.,
along the axis) are not nearest neighbors in the full three
dimensions. Being purely geometrical in origin, dynamical
phyllotaxis could occur in many physical systems, includ-
ing trapped ions in cylindrical potentials [4], Wigner crys-
tals in curved nanostructures, or crystallized ion beams
[5,6].

First we review static phyllotaxis as in Levitov [3]:
assume that a set of particles with long-range repulsive
interactions, when confined to a cylindrical shell of radius
R, forms a helix with a fixed angular offset � between
particles and a uniform axial spacing a, as in Fig. 1. At low
linear particle density (i.e., a=R � 1), the optimal angular
offset that maximizes distance between neighboring parti-

cles is� ¼ �. However, when a=R drops below 2=
ffiffiffi
3

p
, the

second neighbor in the axial coordinate (or ‘‘axial index’’)
becomes the first neighbor in three-dimensional space, and
so � ¼ � becomes unfavorable. As density increases
further, the angles 2�=3 and 4�=3 also become unfavor-
able due to third-neighbor interactions and so on, eventu-
ally generating a so-called Farey tree of unfavorable angles
[7], where every new fractional multiple of 2� is made by
summing the numerators and denominators of the two
previously adjacent multiples [3]. A growing plant evolves
quasistatically from one optimal � to another as R=a
increases, asymptoting to the golden angle�1 ¼ 2�=ð�þ

1Þ [� ¼ ð1þ ffiffiffi
5

p Þ=2], ubiquitous in botany. Occasional
‘‘wrong turns’’ at bifurcations during growth lead to alter-
native angles, the most common of which,�p ¼ 2�=ð�þ
pÞ, with p ¼ 2; 3, are called in botany second and third
phyllotaxis.
This appealing scenario requires experimental confirma-

tion, since it rests on the assumption that the ground states
are helical Bravais lattices parameterized by the angular
offset �. Previous experimental reproductions of phyllo-
tactic patterns did not interrogate the ground state of
particles with long-ranged interactions; instead they exam-
ined kinetic processes in ferrofluid droplets [8] or packings
of hard spheres [9]. To properly test Levitov’s model, we
constructed two versions of amagnetic cactus consisting of
50 outward-pointing, dipolar permanent magnets (spines)
mounted on stacked coaxial bearings free to rotate about a
vertical axis (stem), as in Fig. 1. The system can be
annealed into a lower-energy state by mechanical agitation
[10]. We find that the final states so obtained consistently
assume phyllotactic spirals whose angles � precisely re-
produce first (�1), second (�2), and—for a cactus with
longer spins or dipoles—third phyllotaxis (�3), as ex-
pected in a biological cactus and as shown in Fig. 2.
Often, as also seen in botany [11], the experimental system
fragments into spirals of different �p, corresponding to

FIG. 1 (color online). A specimen of Mammillaria elongata
displaying a helical morphology ubiquitous to nature, a magnetic
cactus of dipoles on stacked bearings, and a schematic of a
wrapped Bravais lattice showing the angular offset (screw angle)
� and the axial separation a between particles.
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two or more local energy minima separated by a domain
wall; this is expected given the degeneracy and low dimen-
sionality. Numerical optimization via a structural genetic
algorithm confirms and extends these results in axially
unconstrained systems [10].

Unlike its botanical analogue, the magnetic cactus can
access dynamics. To better understand it, we first describe
its fascinating self-similar energy landscape [3,7]. The
essential results apply equally to any smooth moderate-
ranged repulsive interaction. We consider dipoles p di-
rected radially outward, interacting via vi;j ¼ pi �
pj=r

3
i;j � 3ðpi � ri;jÞðpj � ri;jÞ=r5i;j. The dipoles can rotate

on their angular coordinate �n but are constrained axially
to equal spacings zn ¼ an, with n the axial index. V ¼
1=2

P
n�mvn;m is the total potential energy. To study dy-

namics, kinetic energy can be added: E ¼ 1
2 I
P

i
_�2i þ V.

Figure 3 plots the lattice energy Vð�Þ versus angular offset
� for spiral lattices (i.e., �n ¼ �n) at various densities. As
discussed above, the lattice energy develops nearly degen-
erate peaks corresponding to commensurate spirals � ¼
2�i=j, with i and j coprime (i.e., having no common
divisors): for these structures �k ¼ �kþj, so V is dominated

by particles facing each other at a distance ja; we call these
peaks of rank j. For given a=R, there is a maximum rank J
[10] (corresponding to the smallest peaks in Fig. 3):

J ¼
�� ffiffiffiffiffiffiffiffiffiffi

2�R

a

s ��
; (1)

½½ �� denoting the integer part. The minima between the
peaks also become nearly degenerate with increasing den-
sity, as each particle sees the others incommensurately
averaged. Via number-theoretical considerations the de-
generacy is found: D ¼ 3

�2 J
2 þOðJ logJÞ / 6R

�a [10]. A

stable structure corresponding to a minimum bracketed
by peaks of rank j1 and j2 is a spiraling lattice where
nearest neighbors are at axial displacements �aj1 and
�aj2 and second nearest neighbors are at �aðj1 þ j2Þ or

�aðj1 � j2Þ [3]. Thus j1 and j2, which are coprime [7],
give the number of crossing helices (in botany, parasti-
chies) that cover the lattice by connecting nearest
neighbors.
This striking potential energy landscape returns non-

monotonic dispersion relations in linearized dynamics,
with many classical rotons and maxons. While rotons in
superfluid 4He are associated with density fluctuations and
generally held to be intrinsically quantum mechanical [12],
phyllotactic rotons have a new, purely geometrical and
classical origin. Consider oscillations around a stable spiral
�: �n ¼ �nþ�k cos½kn�!ðkÞt�. The normal mode
frequency is

!ðkÞ2 ¼ 2!2
j1
½1� cosðj1kÞ� þ 2!2

j2
½1� cosðj2kÞ� þ � � � ;

(2)

where jm is the axial index of themth neighbor �jm and!jm

is the second derivative of v0;jm about the equilibrium

FIG. 3. Top: Lattice energy Vð�Þ (in units of � ¼ p2R�3)
versus screw angle for successively halving values of a=R
starting from 0.5, showing more highly degenerate curves.
Bottom: Energy curve for a=R ¼ 0:15, with six distinct minima.
The highest rank observed, J ¼ 6, matches Eq. (1).

FIG. 2 (color online). Measured angu-
lar offsets between successive magnets
for magnetic cacti with short (left) and
long (right) magnets, plotted versus axial
index. Flat regions are perfect spirals,
and steps are kinks between domains of
different spiralling angles. Dotted lines
give the phyllotactic angles �1, �2, �3,
and 2���2 defined in the text. Dashed
lines are minima of the magnetic lattice
energy (insets) calculated by interpolat-
ing the measured pairwise magnet-
magnet interaction. The magnetic cactus
recapitulates botany.
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spiral �. For simplicity, let us truncate this expansion at
nearest neighbors. Crucially, nearest neighbors in the axial
coordinate are not necessarily nearest neighbors in three
dimensions, and thus fj1; j2; j3; . . .g � f1; 2; 3; . . .g. As ex-
plained before, the nearest neighbors j1 and j2 are instead
the parastichy numbers for � and thus coprime [3,7]: it
follows that the dispersion relation of Eq. (2), truncated to
just ðj1; j2Þ, has a periodicity interval ½��;�Þ (which is not
a Brillouin zone, since our lattice is axially aperiodic) and
is nonmonotonic, but instead shows 2j1 � 1 minima and
maxima—or rotons and maxons (we order j1 and j2 so that
!j1j1 >!j2j2). Figure 4 shows the exact dispersion curves

for each of the stable structures in the top panel of Fig. 3:
extrema follow the 2j1 � 1 rule in all but one case. Physi-
cally, why are there rotons? Although increasing the axial
wave vector drives particles nearby along the axis increas-
ingly out of phase, it can drive particles that are neighbors
in three dimensions more nearly in phase. This discrepancy
between nearest neighbors in 1D and 3D drives rotonic
behavior. Simulations confirm the localization of energy
and momentum that is expected for rotons [10].

While the linear dynamics of phyllotaxis provides ro-
tons, the nonlinear regime generates a new class of highly
nonlocal topological solitons with unusually rich proper-
ties. One-dimensional degenerate systems are generally
entropically unstable against domain wall formation [13]:
we did see kinks both numerically and experimentally
(Fig. 2). Can these kinks travel as topological solitons?
Experimentally, we observed the magnetic cactus expel-
ling a higher-energy domain by propagating its kink along
the axis. Such axial motion of a kink between two domains
of different helical angles confronts a dilemma: the helical
phase is unwound from one domain at a different rate than
it is wound up by the other. Numerical simulations show

that the moving domain wall solves this problem by plac-
ing adjacent domains into relative rotation (S5). If we com-
pare this behavior with the paradigmatic case of sine-
Gordon-like 1D topological solitons, which separate essen-
tially equivalent static domains and can travel at any sub-
sonic speed [13], we see that phyllotactic domain walls
instead separate regions of different dynamics: energy and
angular momentum flow through the topological soliton as
it moves rather than being concentrated in it, and its speed
vK is tightly controlled by energy-momentum conserva-
tion, phase matching at the interface, and boundary
conditions.
As a simple, symmetric example, consider a low-density

system which reproduces our experimental cactus, pre-
pared at rest in a metastable spiral at�1 with free bounda-
ries. As depicted in Fig. 5, lower-energy domains of angle
�2 spontaneously form at the edges and move inward at a
fixed speed while rotating uniformly at _� ¼ vKð�2 ��1Þ.
As the rigid �1 ��2 domain wall advances, it converts

FIG. 4. The phonon dispersion relations for the six phyllotactic
lattices of Fig. 3, with multiple rotons and maxons. Corre-
sponding parastichy numbers (j1 and j2) (defined in the text)
and the three most strongly interacting neighbors [~j1, ~j2, and ~j3]
(!1

~j1 >!2
~j2 >!3

~j3) are given. The simple estimate for the
number of rotons and maxons 2~j1 � 1 holds for all but ð2; 5Þ.
Each spectrum is offset by 5��1 for clarity, where � ¼ ��1=2I1=2

is the unit of time [10].

FIG. 5 (color online). Two phyllotactic solitons approach,
collide, and transform. Top: The screw angle � plotted versus
space and time for a collision of two phyllotactic solitons.
Plateaux of different height correspond to spirals of different
angle. Middle: The potential energy V drops as the lower-energy
domains advance, converting into rotational kinetic energy of the
newborn domain (see online animation S5). Deviations starting
around t ¼ 2 arise from precursor elastic waves propagating in
front of the solitons that ensure local angular momentum con-
servation [15]. Bottom: The lattice energy Vð�Þ corresponds to
the physically realized magnetic cactus of Fig. 2 (bottom), with
minima at �1=2� ¼ 0:23, �2=2� ¼ 0:28, and �3=2� ¼ 0:38.
For clarity, weak high-wave-vector phonons were smoothed by
spatial averaging, here and in Fig. 6.
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the potential energy difference V2 � V1 into rotational
kinetic energy: Ið�2 ��1Þ2v3

kt ¼ 2ðV2 � V1ÞvKt, which
requires a propagation speed of

v2
K ¼ 2�V

I��2
: (3)

The measured speed, 22:1a s�1 (see Fig. 5), agrees well
with the value predicted from Eq. (3), 23:4a s�1, the
discrepancy likely coming from phonon radiation (ex-
pected for a soliton on a discrete lattice).

An extraordinarily rich phenomenology, well beyond
that seen in traditional soliton models [14], emerges from
more complex numerical simulations: kinks of different
species merge, decay, change identity upon collision, and
decompose at high temperature into a sea of constituent
lattice particles. Figure 6 depicts an unstable domain wall
decaying into two topological solitons, one of which re-
flects off a free boundary, then catches up, and merges with
the other to form a new soliton of different characteristic
speed. A continuum analytical model that takes into ac-
count the rotational kinetic energy of the domains can
predict and classify many of these phenomena [15].

Because dynamical phyllotaxis is purely geometrical in
origin, this rich phenomenology of new excitations could
appear across nearly every field of physics. Indeed, phyl-
lotactic domain walls have already been seen, but not
recognized, in simulations [5] of cooled ion beams [6]
where the system self-organizes into concentric cylindrical
shells. Trapped ions or dipolar molecules could attain a J
of several tens [4]. Colloidal particles on a cylindrical
substrate provide a highly damped version [16], and poly-
styrene particles in air (as used to investigate [17] the
Kosterlitz-Thouless-Halperin-Nelson-Young theory of 2D
melting [18]) have reasonably low damping and long-range
interaction. With charged repulsive particles and the con-
straint to equal axial spacing released, each topological

soliton carries a different charge [15]. Strikingly, this
charge is not conserved in soliton collisions, since it can
be lent to or borrowed from a weakly pinned [19] lattice.
This could happen in Wigner crystals on suspended,
weakly doped semiconducting carbon nanotubes or boron
nitride nanotubes. Phyllotactic degeneracy requires small
enough a=R ¼ r2s=2R

2. Since rs � 37 [20], from Eq. (1)

we have that R � ð37J=2 ffiffiffiffi
�

p Þa0 ’ 5:5J �A for a maximum
peak rank J. a0 is the Bohr radius for an appropriate

effective mass and dielectric constant. If a0 ¼ 0:53 �A,
the minimal degeneracy, D ¼ 2 and J ¼ 2, occurs already

for R ’ 11 �A. Finally, the extension of this fascinating
geometrical structure to the quantum regime is particularly
intriguing.
This work was supported by the National Science

Foundation through DMR-0609243 and ECS-0609243.

[1] I. Adler et al., Ann. Bot. 80, 231 (1997); R. V. Jean,
Phyllotaxis: A Systemic Study in Plant Morphogenesis
(Cambridge University Press, Cambridge, England, 1994).

[2] L. Bravais and A. Bravais, Ann. Sci. Nat., Bot. 7, 42
(1837); 7, 193 (1837); 7, 291 (1837); 8, 11 (1837); A.
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FIG. 6 (color online). The topological solitons can decay,
merge, and change identity. An initial unstable domain boundary
decays into two solitons. The left-hand soliton bounces off the
free boundary, maintains its shape, propagates rightward faster
than the other, collides with it, merges, and transforms into a
third topological soliton with a different characteristic speed. S5
provides an animation. The density is a=R ¼ 0:15.
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