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The appearance of mathematical regularities in the disposition of leaves on a stem, scales on a pine-cone,
and spines on a cactus has puzzled scholars for millennia; similar so-called phyllotactic patterns are seen in
self-organized growth, polypeptides, convection, magnetic flux lattices and ion beams. Levitov showed that a
cylindrical lattice of repulsive particles can reproduce phyllotaxis under the �unproved� assumption that mini-
mum of energy would be achieved by two-dimensional Bravais lattices. Here we provide experimental and
numerical evidence that the Phyllotactic lattice is actually a ground state. When mechanically annealed, our
experimental “magnetic cactus” precisely reproduces botanical phyllotaxis, along with domain boundaries
�called transitions in Botany� between different phyllotactic patterns. We employ a structural genetic algorithm
to explore the more general axially unconstrained case, which reveals multijugate �multiple spirals� as well as
monojugate �single-spiral� phyllotaxis.
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I. INTRODUCTION

Symmetrical morphologies and regular patterns in living
organisms �Fig. 1� have been credited with originating the
idea of beauty, the notion of art as an imitation of nature, and
humanity’s first mathematical inquiries �1–4�. The fascinat-
ing symmetrical patterns of organs in plants, called phyllo-
taxis �1–3�, were known to the Romans �Pliny� and ancient
Greeks �Theofrastus�, while early recognitions are found in
sources as ancient as the Text of the Pyramids �1�. Leonardo
da Vinci �5�, Andrea Cesalpino, and Charles Bonnet �6� stud-
ied phyllotaxis in the modern era. Kepler proposed that the
Fibonacci sequence �1, 2, 3, 5, 8,…�, where each term is the
sum of the two preceeding ones �7�, describes these phyllo-
tactic patterns.

A discipline that thrived on multidisciplinary interactions
�8�, phyllotaxis found its standard mathematical description
when August and Louis Bravais �9� introduced the point lat-
tice on a cylinder to represent the dispositions of leaves in
1837 �see Fig. 2�, thirteen years before August’s seminal
work on crystallography �10�. Unfortunately botanists ne-
glected the work of the Bravais brothers, and it was not until
Church rediscovered it 80 years later that more progress was
achieved in the field �11�.

The geometrical description of cylindrical phyllotaxis re-
lies, in the simplest case, on the phyllotactic lattice intro-
duced by the Bravais brothers �1–3,9�. It consists of a so-
called generative spiral of divergence angle �. We can
visually decompose the resulting lattice in crossing spirals
that join nearest neighbors, as in Fig. 2, which botanists call
parastichies. It is a fundamental observation �made first by
Kepler� that the numbers n, m of crossing parastichies
needed to cover the lattice are consecutive terms of the stan-
dard Fibonacci sequence, or less frequently the variants ob-
tained by changing the second term, also called Lucas num-
bers: 1, 3, 4, 7, 11,… and 1, 4, 5, 9,… often referred to as
second and third phyllotaxis. From that, one can prove that
the divergence angle of the generative spirals in plants as-
sumes values close to �2,12�

�p =
360°

�� + p�
, �1�

where p=1,2 ,3 denotes first, second, or third phyllotaxis
and �= �1+�5� /2 is the golden ratio. For more than one gen-
erative spiral �“multijugate” phyllotaxis�, parastichies share a
common divisor �n ,m�= �kn� ,km��, k being the number of
generative spirals �2,12�. Not unlike domain boundaries in
crystals, plants show kinks between domains, called transi-
tions by botanists �1,13�.

In the last 50 years, phyllotactic patterns have been seen
or predicted outside of botany: polypeptide chains �14,15�,
tubular packings of spheres �16�, convection cells �17�, lay-
ered superconductors �18�, self-assembled microstructures
�19�, and cooled particle beams �20,21�. While it is still de-
bated whether such systems might shed light on botanical
phyllotaxis, the occurrence of such mathematical regularities
outside of botany is fascinating and leads to generalizations
that—unlike quasistatic botany—allows for dynamics �22�.

In a groundbreaking work Levitov recognized phyllotaxis
in vortices of layered superconductors �18�. He next de-
scribed how phyllotactic patterns represent states of minimal

FIG. 1. �Color online� Natural and magnetic cacti. A specimen
of Mammillaria elongata displaying a helical morphology ubiqui-
tous to nature, a magnetic cactus of dipoles on stacked bearings,
and a schematic of a wrapped Bravais lattice showing the angular
offset �divergence angle� � and the axial separation a between
particles.
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energy of a cylindrical lattice �that is of a lattice with cylin-
drical boundary conditions� of mutually repelling objects, the
repulsion mimicking the interactions between spines, leaves,
or seeds in plant morphology �23,24�. Yet such a constraint
to a lattice is absent both in botany and in the physical sys-
tems to which this energetic model might apply, such as
adatoms or low-density electrons on nanotubes and ions or
dipolar molecules in cylindrical traps.

Following up on earlier work that focused on the dynam-
ics of rotons and solitons in physical phyllotactic systems
�22�, we provide here a detailed experimental and numerical
demonstration that Levitov’s constraint is not necessary, and
that the lowest energy states of repulsive particles in cylin-
drical geometries are indeed phyllotactic lattices. In addition,
we describe the experimental and numerical generation of
multijugate phyllotaxis, static kinklike domain boundaries
between different phyllotactic lattices, and unusual disor-
dered yet reflection-symmetric structures that may be a static
relic of soliton propagation.

We show that when a “magnetic cactus” of magnets
�spines� equally spaced on coaxial bearings �stem� with
south poles all pointing outward is annealed, it precisely re-
produces botanical phyllotaxis. When studied numerically
via a structural genetic algorithm, the fully unconstrained
case reveals both multijugate and monojugate phyllotaxis. In
addition to our macroscale implementation, such systems
could also be created at the quantum level in nanotubes or
cold atomic gases.

In Sec. II we describe the statics of repulsive particles in
cylindrical geometries. In Sec. III we detail the experiment
on the magnetic cactus. In Sec. IV we study the completely
unconstrained case via a structural genetic algorithm. In Sec.
V we discuss the more general case of multijugate phyllo-
taxis.

II. PHYLLOTAXIS OF REPULSIVE PARTICLES IN
CYLINDRICAL GEOMETRIES

In this section we will recall Levitov’s model �23,24� and
some of our own findings �22�. Following Levitov, let us

assume that the lowest energy configuration for a set of par-
ticles with repulsive interactions, confined to a cylindrical
shell of radius R, is a helix with a fixed angular offset �
between consecutive particles and a uniform axial spacing a,
as in Fig. 1 �this so far unproved ansatz will be investigated
later both numerically and experimentally�. For a generic
pairwise repulsive interaction vij between particles i and j,
the energy of the helix is V= 1

2�i�jvi,j. Since the lattice struc-
ture is defined by �, we can write V���.

In Fig. 3 we plot V��� for various values of the ratio a /R:
for specificity we employed a dipole-dipole interaction vi,j
=pi ·p j /ri,j

3 −3�pi ·ri,j��p j ·ri,j� /ri,j
5 , repulsive at the densities

considered here. However, the following considerations only
depend upon geometry and therefore apply to a vast range of
reasonably behaved, long range repulsive interactions.

When a /R�1, the angle �=� maximizes distance be-
tween neighboring particles and therefore V��� has a mini-
mum in �. The angle between second nearest neighbors
along the helix is 2�, which means that they face each other.
And thus, as the density increases, interaction between the
facing second nearest neighbors becomes predominant, and
�=� is not a minimum for V��� anymore. If we shift the
helical angle from �, the repulsive interaction between sec-
ond nearest neighbors is reduced, with minimal penalty from
nearest neighbors. In terms of V���, that means a local maxi-
mum �=�.

This argument can be iterated for every commensurate
winding that allows particles separated by j neighbors to face
each other. As density increases further, the angles 2� /3 and
4� /3 also become unfavorable due to third-neighbor inter-
actions. Any commensurate spiral of divergence angle
�=2�i / j with i , j relatively prime corresponds to a configu-
ration where each particle faces each jth neighbor. For every
j there will be a value of a /R low enough such that
�=2�i / j is a local maximum, which we call a peak of
rank j.

The proliferation of peaks for increasing linear density is
shown in Fig. 3. We can see that at high density, peaks of
equal rank are nearly degenerate; that is natural, since their
principal defining energetic contribution arises from particles
facing each other at a distance ja. The minima also become
more nearly degenerate as the density increases. That can be

FIG. 2. �Color online� The Bravais lattice with cylindrical
boundary conditions that defines a phyllotactic spiral. The cylinder
axis is vertical, while the horizontal direction contains three circum-
ferential repeats. The solid line is the generative spiral: this one-
dimensional Bravais lattice generates the full structure. The dashed
lines are the so-called parastichies or visible secondary spirals: they
connect nearest neighbors on the surface of the cylinder. Adapted
from Bravais and Bravais �9�.
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FIG. 3. Lattice energy V��� versus divergence angle for succes-
sively halving values of a /R starting from 0.5 �using dipole-dipole
interaction, �= p2 /a2, where p is the magnetic dipole�. Notice the
proliferation of peaks as a /R decreases. Reproduced from �22�.
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explained intuitively, since for angles incommensurate to �
each particle “sees” the others as incommensurately smeared
around the cylinder, and is therefore embedded in a nearly
uniform background charge from the other particles. The de-
generate energy of the ground state can be well approxi-
mated by an uniform continuum distribution �0, whereas the
energy of a peak of order j will be V�2�i / j��v�ja�+�0,
where v�r� is the energy of two particles facing at a distance
r: for our dipole interaction v�ja�= p2 /a3j3.

The first step to calculate the degeneracy of our system at
a given density is to find the corresponding maximum rank
of the peaks. As all of the peaks of the same rank have the
same energy, and appear in the spectrum together, we can
focus on the emergence of 2� /J. For a /R�1, this new peak
will emerge when the distance between particles separated
by a distance Ja equals that of particles separated by 2�R /J.
Therefore one finds for the maximum rank

J = ��2�R

a
	 , �2�

which as expected only depends on purely geometrical pa-
rameters �double brackets denote integer parts�. A little more
tricky is to compute the degeneracy, given J. The set of all
the peaks has the cardinality of the class of all the fractions
i / j, with i , j coprime and j�J. This can be considered as the
disjointed union of other classes, called Farey classes of or-
der j, defined as follows: Pj 
��
=2�i / j � for i , j coprime and i� j
, i.e., all fractions in
lowest terms between 0 and 1 whose denominators do not
exceed j �25�. The union of all Farey classes up to a certain
order J has the cardinality of the set of peaks for a spectrum
of maximum rank J. Now, the cardinality of Pj is know from
number theory to be Euler’s totient function, 	�j� �26�.
Therefore, the degeneracy D of the energy minima for a
system with a maximum peak rank J is �26�

D = �
j=1

J

	�j� =
3

�2J2 + O�J log J� , �3�

which, from Eq. �2�, scales as D�2R /a.
Finally, we recall �3,18� that the order j1, j2 of the peaks

bracketing a minimum relates to its structure in a straightfor-
ward way: the helix corresponds to a rhombic lattice where
each particle has its nearest neighbors at axial displacements
of 
aj1, 
aj2 and second nearest neighbors at 
a�j1+ j2� or

a�j1− j2� �18�. Also, j1 and j2 give the number of crossing
secondary spirals �parastichies� needed to cover the lattice by
connecting nearest neighbors.

For completeness, let us now follow Levitov �18,23,24�,
and consider the adiabatic evolution of our system as the
linear density is increased. As new sets of maxima and
minima emerge, the true minimum goes through a series of
quasibifurcations, the consequence of an elusive symmetry
whose explanation goes beyond our scope. Suffice it to say
that the system evolves quasistatically from one of these op-
timal � to another as R /a increases, asymptoting to the
golden angle �1=2� / ��+1� ��= �1+�5� /2�, ubiquitous in
botany, as each minimum is bracketed by peaks whose ranks,
because of the Farey tree structure described above, are con-

secutive elements of the Fibonacci sequence. Occasional
“wrong turns” at later stages, will not shift the convergence
too far from the golden angle, yet the Fibonacci structure
would be lost. However if one or two consecutive wrong
turns happen at the second or second and third bifurcations
the system will converge to the alternative angles of second
or third phyllotaxis, given by Eq. �1�.

We have only surveyed so far spiraling lattices generated
by a single helix. A straightforward generalization gives mul-
tijugate phyllotaxis, when two or more elements grow at the
same axial coordinate �1–3�. This case, which Levitov does
not explore, can be easily mathematically reduced to mono-
jugate case, by considering two or more replicas of the phyl-
lotactic lattice as in Fig. 2. In our experimental realization
we restrict ourselves to the monojugate phyllotaxis, and ex-
plore multijugate only numerically.

III. MAGNETIC CACTUS

There is a long history of experimental reproductions of
phyllotactic patterns. Recently, Doady et al. described phyl-
lotaxis in terms of dynamical systems and then verified it
experimentally by examining dynamical processes in drop-
lets of ferrofluid �27�. But even more than a century ago,
Airy showed that phyllotaxis emerged in optimal packing of
hard spheres connected by a rubber band, once the band was
twisted to increase density �28�.

Here we expand on what was announced in a recently
published Letter �22�: we verify experimentally the assump-
tions of Levitov’s energetic model, by studying the low-
energy configurations of interacting magnets stacked evenly
spaced and free to rotate around a common axis. We con-
structed a mechanical system that it is free to explore the
three angles of botanical phyllotaxis �Eq. �1��.

A. Experimental apparatus

We built a magnetic cactus by mounting permanent mag-
nets �spines� on stacked coaxial bearings �a stem� which are
free to rotate about a central axis, as in Fig. 4. All the mag-
nets point outward, to produce a repulsive interaction be-
tween all magnet pairs. To avoid effects of gravity, the appa-
ratus rests in the vertical position, and is nonmagnetic. We
built two different versions, the second with magnets twice
as long as the first, as to have a larger effective radius which
gives three rather than two stable structures.

We employed cylindrical permanent iron-neodymium
magnets, 1.2 cm long and 0.6 cm in diameter. They are
mounted on fifty aluminum rings of 2.2 cm outer
diameter, each affixed to a nonmagnetic radial ball bearing
�acetal/silicon, Nordex� as in Fig. 4. These unit rings are
evenly spaced on an aluminum rod in a stacked structure of
39.9 cm axial length.

At static equilibrium we measure separation angle be-
tween each magnet element, by rotating the cactus until a
magnet element aligns with the reference wires. A telescope
and a vertical viewing slit accompanied by two vertical ref-
erence wires assist in data acquisition.
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B. Annealing

By measuring the dipole-dipole interaction between an
individual magnet pair, we can reconstruct the curve of the
lattice energy V��� as a function of the angular offset �
between magnets. We find that the first arrangement, with
short magnets, admits two minima, given by the angles of
Eq. �1� for p=1,2. The second arrangement, with long mag-
nets, has three minima corresponding to the angles of Eq. �1�
p=1,2 ,3, one of which �p=3� is a weak metastable mini-
mum. All these divergence angles of stable helices, which
are very close to those predicted by phyllotaxis, of Eq. �1�,
are accessible by experimental procedure described below.

Before every data acquisition, the cactus is disordered and
then athermally annealed into a low-energy state. The proto-
col involves repeatedly winding the bottom-most magnet to
generate an ever-tightening spiral, until an explosive release
of energy disorders the lattice. Next, an independent external
magnet is oscillated in small circular motions near randomly
chosen points while the cylinder as a whole is slowly rotated,
to further randomize magnet orientations. After 10–30 s of
mechanical annealing through applied vibrations, the system
consistently enters a robust ordered state which does not an-
neal further on experimental time scales.

C. Results

Figure 5 reports the experimental results for both arrange-

ments by plotting the measured angle between consecutive
magnets. The more narrow �short-magnet� cactus self-
organizes into the spirals with divergence angles precisely
reproducing those of first phyllotaxis, �=�1, and second
phyllotaxis, �=�2, as in Eq. �1�. When the results are rep-
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FIG. 5. �Color online� A three-dimensional �3D� rendering of
the experimental data and the corresponding Bravais lattice of the
magnetic cactus annealed in a spiral configuration of divergence
angle �1 and parastichies �2,3� �blue and red dashed lines�, Fi-
bonacci numbers. The figure also shows the experimentally mea-
sured angular offsets � between successive magnets for magnetic
cacti with short and long magnets, plotted versus magnet index,
which simply counts the number of magnets along the axis. Flat
regions are perfect spirals while steps are boundaries between dif-
ferent phyllotactic domains. The dotted lines give the phyllotactic
angles �1, �2, �3, and 2�−�2 defined in the text, whereas the
dashed lines are minima of the magnetic lattice energy �insets� cal-
culated by interpolating the measured pair-wise magnet-magnet in-
teraction. Data reproduced from Ref. �22�.
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FIG. 4. Experimental apparatus. Top: each unit of the magnetic
cactus consists of a magnet element and a unit ring secured to a
central axis. The ring diameter d is 2.2 cm. Bottom: a schematic
representation of the mounted magnetic cactus and surrounding
measurement devices. The viewer’s eyes are restricted by the view-
ing slit and the reference wires. Measurements are taken directly
from the dividing head.
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resented in a two-dimensional �2D� lattice, as in the top of
Fig. 5, parastichies can be drawn. As parastichial numbers
for �=�1 we find the Fibonacci numbers �2,3�, and for �
=�2, the Lucas numbers �3,4�, as seen also in botany. The
larger-radius system also forms first and second Phyllotaxis
helices, as well as limited domains of third phyllotaxis �with
�=�3 and Lucas numbers �1,4��, bracketed by domains of
second phyllotaxis. The insets of Fig. 5 show the magnetic
interaction energy V��� of the lattice obtained by interpolat-
ing measured values for the pairwise magnet-magnet inter-
action, plotted as a function of divergence angle �. As we
can see, local minima correspond to phyllotactic angles.

Figure 5 also shows that in many instances the system
fragments into two or three distinct domains whose domain
walls always share a common parastichy, as seen in botany
�1,13�, and as expected in physics for a quasi-one-
dimensional degenerate system. We have computed numeri-
cally one such transition via dynamical simulations in a
velocity-Verlet algorithm, in the following way: we start
from a crude static steplike kink as an initial condition, and
allow it to radiate energy in the form of phonons waves until
it stabilizes in a kink with superimposed vibrations; we then
average this configuration over time, to remove these re-
sidual oscillations. When the result is used as new initial
conditions, it proves to be a static kink. Figure 6 reports our
numerical results for a kink in a system whose size and in-
teraction reproduces the physical realization of the magnetic
cactus, along with the experimental data for such a kink. The
match is essentially perfect, indicating that the dissipative
�i.e., frictional� forces neglected in our model do not signifi-
cantly affect the static configurations. We apply the same
numerical procedure to calculate a kink in a system of larger
degeneracy, among domains which are absent in our physical
realization. We use a smaller a /R ratio and a different inter-
action between particles �ideal dipole instead of physical di-
pole�. The result shown in Fig. 7 reproduces the same quali-
tative shape of the previous, lower degeneracy case. Similar

kinks are present also in a fully unconstrained cactus, one in
which the particles can move along the axis, and are found in
early generations of our structural genetic algorithms �see
below�. Finally, these kinks can travel as novel topological
solitons, with a rich phenomenology that is explained else-
where �22,29�.

Finally, in the system with longer magnets, we occasion-
ally found intriguing yet hard-to-interpret configurations that
contain two nearly reflection-symmetric domain boundaries.
Figure 8 reports two such configurations, measured in inde-
pendent experimental runs. Although we do not have a firm
explanation for these structures, we speculate that they form
as frozen-in soliton waves that initiated symmetrically at
both ends of the structure, upon release of the wound-up
elastic energy during initial preparation. Indeed an analytical,
continuum theory for phyllotactic solitons which we have
developed recently, and which explains results of the dy-
namical simulations also supports the existence of similar
frozen-in pulses �29�.

IV. FULLY UNCONSTRAINED CACTUS: STRUCTURAL
GENETIC ALGORITHM

Our experimental apparatus is not fully unconstrained: the
axial coordinates of the dipoles are fixed, and so only the
azimuthal movement is allowed. While this is an huge im-

FIG. 6. �Color online� A kink between domains of first and
second phyllotaxis. From top to bottom: a 3D rendering, and its
unwound 2D Bravais lattice from numerical simulations. Below, the
same kink plotted as angle increments between successive magnets
for the experimental system �crosses� and numerical simulation
�circles�.
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FIG. 7. A numerically calculated kink in a system of dipoles of
high degeneracy �seven minima, a /R=0.15�. The kink separates
domains with parastichy numbers �4,5� and �5,6� and divergence
angles of 1.38 and 1.13 radians. The top and middle panels give its
three-dimensional rendering and angular shift � versus the axial
magnet index. The two domains correspond to minima bracketed by
peaks at � /2�=1 /4,1 /5 and � /2�=1 /5,1 /6 of the lattice energy,
given in the bottom panel, where �= p2 /a2, p being the magnetic
dipole.
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provement toward the original helical constraint of Levitov,
many �most� physical systems that could manifest phyllotac-
tic patterns do not posses such a lesser azimuthal constraint.
To corroborate and extend our experimental results to a com-
pletely unconstrained system, we seek the energy minimum
in a set of repulsive particles that can move axially as well as
angularly on a cylindrical surface, via a nonlocal numerical
optimization. To this purpose, we developed a structural ge-
netic algorithm.

A. Genetic algorithm

A genetic algorithm is a method of optimization that mim-
ics evolution to find the absolute minimum in a function
which shows a large number of metastable minima. The co-
ordinates of the energy functions are called genes, and a set
of genes is a particular specification of value for those vari-
ables. The routine typically starts with a set of “parents,” or
specific points in the domain of the energy function. At each
stage of the routine, parents “mate” to produce children via
exchange of genes: a subset of the coordinates of each of the
two configurations are swapped, therefore generating new
points in the energy domain, called children. Each of those
children is then locally relaxed to a minimum via a local
search. The new population of parents and children under-
goes genetic selection and only the fittest �the lowest energy
ones� form a new population.

There are many different implementations of this general
idea: care is taken not to lose genetic diversity during selec-
tion, to avoid a population of almost identical replicas; that is
usually achieved with a more or less skilled genetic selec-
tion, which might retain less genetically fit individuals, and

often by introducing mutations in the form of random alter-
ation of the gene sequence, which would hopefully prevent
the routine from getting stuck around a metastable region.
Choice of parameterization of the structures �genes� and mat-
ing �crossover� is crucial to the performance of the algo-
rithm.

About 15 years ago, Deaven and Ho �30� introduced a
so-called structural genetic algorithm, which proved particu-
larly efficient in minimizing the energy of physical struc-
tures, as it allows for physical intuition in defining the genes
and mating procedure. With it, they found the C60 fullerene
structure as a ground state of 60 carbon atoms interacting
with suitable atomic potentials �30� and solved the celebrated
Thomson problem of repulsive charges on a sphere �31�, a
task quite similar to ours.

B. Our algorithm

In our implementation we use a population of ten mem-
bers. Each member represents a configuration of 101 par-
ticles on the cylinder: more explicitly, the genetic structure of
each member Pk, k=1, . . . ,10, of the population is a set of
variables, or Pk= ��i ,zi
i=1

101 which specifies, in cylindrical co-
ordinates, the positions of the particles composing its struc-
ture. The particles interact via a pairwise inverse quadratic
repulsion V=Vo�ro /r�2, where r is the three-dimensional dis-
tance between particles; we introduce a confining potential
in the form of an external axial square-well of width L,
which sets the length of the cylinder, and hence the density.
The choice of the pairwise interaction is not fundamental, as
long as it is long ranged, repulsive, and well behaved �22�;
our particular choice simply speeds up the computation.

We generate the first population randomly. At each step,
we randomly couple mates, and exchange their genes em-
ploying the following mating procedure: we order the genes
by increasing axial coordinates z1�z2� ¯ �z101 and swap
the first 1�n�101 genes, where n is a random number,
between randomly selected parents. The children obtained in
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2�−�2 defined in the text. Dashed lines are minima of the mag-
netic lattice energy �inset� calculated by interpolating the measured
pairwise magnet-magnet interaction.

FIG. 9. Relative energy of the fittest member of the population
in every generation. Early generations return very high energy con-
figurations corresponding to disordered metastable states. Interme-
diate generations show populations of phyllotactic domains sepa-
rated by kinks between. Finally, the algorithm converges to a single
crystalline domain in the bulk �deformations at the boundaries sim-
ply accommodate the system to the confining potential�.
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this way are then relaxed to a stable structure via a standard
conjugate gradient algorithm. We then prepare the new gen-
eration by selecting the lowest energy individuals in the
population of parents and children, yet making sure that the
energy difference between members does not fall below a
certain threshold, to preserve genetic diversity: when new
children cannot produce a new population of ten in accor-
dance with the energy threshold, we introduce mutations by
randomly altering a certain number of members.

C. Numerical results

During the structural evolution, the earliest populations
contain metastable disordered states. Members of intermedi-
ate populations show kinks between domains of different di-
vergence angle, configurations which are also seen experi-
mentally. After 15 to 20 generations, the algorithm typically
converges to a single crystalline domain.

Figure 9 reports the energy of the fittest member of the
population at each generation in a typical run, showing a
punctuated-equilibrium evolution where the most-fit struc-
ture progressively decreases in energy in intermittent steps
separated by plateaux. The final converged results form well-
defined two-dimensional cylindrical crystals away from
boundaries.

Figure 10 shows the crystalline structure to which the
algorithm converges, for R=1.65L /N: a single spiral with
�=�1, as defined in Eq. �1�, corresponding to first phyllo-
taxis with parastichies �1,2�. A plot of 
z=zi+1−zi returns the
value L /N in the bulk, which implies a single generative
spiral. This choice of RN /L corresponds to a density close to
that of our experimental apparatus.

V. MULTIJUGATE PHYLLOTAXIS

For highly degenerate systems the genetic algorithm re-
turns configurations with more than one generative spiral,
corresponding to what in botany is called multijugate phyl-
lotaxis �2�. We have seen before that helices make cylindri-
cally symmetric lattices. On the other hand, every cylindri-
cally symmetric lattice can be decomposed into a suitable
number of equispaced generative spirals �2,9�. That is ac-
complished by discretizing the cylinder along its axis into
equally spaced rings and then assigning at each ring n sites,
equally spaced and separated by a 2� /n angular shift. As
before, each ring is shifted consecutively by a divergence
angle �. The case n=2 is shown at the top of Fig. 11. The
case n=1 is shown in our experimental arrangement of Fig.
1.

By decomposing the n-jugate cylindrical lattice into n lat-
eral replicas of single-spiral lattice, as in Fig. 2, the reader is
easily convinced that multijugate phyllotaxis reduces to the
previously described monojugate case. All the considerations
above apply, provided that one now takes the periodicity to
be 2� /n, and the distance between rings to be na �with, as
before, a=L /N�. It follows that a n-jugate configuration will
have local maxima in 2�i /n, i=1. . .n and, following the
discussion of Sec. II, one finds that there will be other local
maxima corresponding to angles 2� /n� i / j when j� �J /n�,

and J is the maximum rank given by Eq. �2�.
Note now that if two multijugate lattices of jugation n, n�

have a peak in the commensurate angle 2�i / j, then the en-
ergy of the peak is the same, as is shown in Fig. 11, bottom,
which compares the plots of the energy of such an arrange-
ment for different values of n. In fact both configurations
correspond to particles facing each other after j /n and j /n�
rings, and therefore at the same distance na� j /n=n�a
� j /n�= ja, independent of n or n�. For small n the minima
in the energy of n-jugate configurations essentially degener-
ate with the monojugate one previously explored. For large n
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FIG. 10. Numerical optimization via structural genetic algo-
rithm for N=101 repulsive particles �V=Vo�ro /r�2� constrained to a
cylindrical surface of length L and radius R=1.65L /N. The result-
ing 2D Bravais lattice has a nearly constant axial separation

z=zi+1−zi �top� and angular divergence � between successive
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they have higher energy. If a /R is small enough, the thresh-
old is n�J, as interaction between particles on the same ring
become comparable to those facing in the minimal monoju-
gate peak.

VI. CONCLUSION

We have studied the lowest energy configurations of re-
pulsive particles on cylindrical surfaces, both experimentally
and numerically. We have found that they correspond to the
spiraling lattices seen in the phyllotaxis of living beings,
both monojugate and multijugate. By establishing experi-
mentally and numerically that phyllotactic point lattices are

ground states in the very general geometric scenario of un-
constrained repulsive particles on cylinders, we have opened
the study of phyllotaxis to a much wider range of annealable
physical systems where the particles could be electrons, ada-
toms, ions, dipolar molecules, nanoparticles, etc. constrained
by external potentials.

Unlike plants, these multifarious, nonbiological Phyllo-
tactic systems could access various degrees of dynamics,
providing new phenomenology well beyond that available to
overdamped, adiabatic botany. We have reported elsewhere
�22� on the dynamical richness of this physical phyllotaxis,
including classical rotons and a large family of novel, inter-
converting topological solitons.
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