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We compute the full elastic deformations, as well as length, of self-trapped electronic states in carbon
nanotubes of general radius and chirality, within the unifying framework of a recently presented two field
model for electromechanics of carbon nanostructures. We find that deformations are highly nonmonotonic in
the chiral angle, whereas the length of the polaron is not. Applications include nanomechanical devices as
electrically or optically driven nanoactuators.

DOI: 10.1103/PhysRevB.80.113406 PACS number�s�: 81.05.Tp, 62.25.�g, 46.05.�b, 77.65.�j

Coupling between electronic and elastic structure of car-
bon nanotubes1–3 leads to theoretically interesting and tech-
nologically relevant phenomena: among other things, gap
opening can be induced via strain4,5 �allowing mechanical
control of the conductance� and injecting electron/holes in-
duces mechanical deformations6,7 �important for realization
of electrical nanoactuators� or shifts in Raman phonon
modes.8–10 Excitations leading to spontaneous distortions
driven by electron-phonon couplings are of particular interest
to the electromechanics of nano devices.11,12 In particular
light induced mechanical deformations, or optomechanical
effects can be observed at high temperatures in nanotube, as
excitons are more strongly bound.13 Recently, Verissimo-
Alves et al.14 have predicted the existence of self-trapped
electron and hole states in semiconducting carbon nanotubes
by feeding parameters from ab initio density functional cal-
culations into a very simplified continuum model. They
found lengths of the order of 40–60 nm and energies of order
of 10−2–10−1 meV. Their long polaron approximation is
confirmed by atomistic numerical analysis, e.g., of Bratek et
al.15

Chiral indices are known to play dramatic role in the
physics of carbon nanotubes. Not only they dictate the me-
tallicity, they are known to control in a very delicate way
electromechanical and vibrational effects.8–10 It is of outmost
importance both theoretically and technologically to be able
to predict for which chirality a polaron induces, e.g., contrac-
tion rather than elongation, radial expansion rather than
shrinking, or torsion etc. While Ref. 14 first suggested the
presence of polarons, their simplified model cannot address
the complex deformations in carbon nanotubes and com-
pletely ignores chirality dependence. On the other hand,
more complete treatments based on atomistic models are too
complex to be solved analytically or too computationally
costly to return detailed answers for a general case.

In this Brief Report, we employ a recently presented16

bicontinuum model to solve this predicament and calculate
the full range of deformations induced by self-trapped
electrons/holes for the general carbon nanotube. We find that
deformations are, as one would expect, highly nonmonotonic
in the chiral indices, even with abrupt change in signs in
nanotubes of about the same chirality and about the same
radius.

In a recent work, Nisoli et al.16 have introduced a two
field unifying framework for elasticity, lattice dynamics and
electromechanical coupling in carbon nanostructures that ac-

counts for the full atomistic detail of the graphene lattice,
and explains a wealth of experimental and numerical results
without computationally intensive atomistic treatments. They
defined an elastic field for each of the mutually interlaced
triangular sublattices that make the honeycomb lattice, ui�x�,
vi�x�, i=1,2 �see Fig. 1� and the corresponding strain
tensors17 uij =��i�u�j�, vij =��j�v�i�, and wrote the elastic energy
via considerations of symmetry. Unlike Ref. 16, we work
here with the average displacement 2pi= �ui+vi�, inner dis-
placement 2qi= �ui−vi�, and corresponding strain tensors pij,
qij. In these variables, the elastic energy of Ref. 16 becomes
Wel=��Vel�p ,q�dx2, with

Vel�p,q� = �̂pijpij +
�̂

2
pi

ipj
j +

1

2
��

2q2 − 2�eijkq
ipjk, �1�

where we have employed the long polaron approximation to
neglect the dispersion of the optical branches.18 The tensor
eijk is invariant under the C3v group and can be represented
by the three unit vectors �ê�l��l=1,3 of Fig. 1,

eijk =
4

3�
l=1

3

êi
�l�êj

�l�êk
�l�. �2�

There are thus four parameters: ��, the graphitelike optical
frequency; � which determines the strength of the rotational
symmetry breaking, contains all information about the point
group symmetry of graphene, and defines the important
length �	4� /��

2 =0.3;16 and the generalized Lamè symbols

�̂, �̂, which can be expressed in terms of the longitudinal and

FIG. 1. The two sublattices �circles and squares� of graphene
and the three unit vectors ê�l� used in the text. 	, z are cylindrical
coordinates of a tube, while 
=� /6−�c with �c the chiral angle.
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transverse speed of sound in graphene, vL
2 =2�̂+ �̂−4�2 /��

2 ,
vT

2 = �̂−4�2 /��
2 , and are related to the actual Lamè symbols

of graphene �r, �r via �r= �̂−4�2 /��
2 and �r= �̂+4�2 /��

2 .
We then write p in term of the isotropic �o�, anisotropic ��,
and shear/torsional ��� strain in the nanotube coordinates

p		 = o +  ,

pzz = o −  . �3�

p	z = pz	 = � .

In these new variables the elastic energy Eq. �1� now reads

Vel = 2�̂o
2 + 2�̂�o

2 + 2 + �2� +
1

2
��

2q2 − 4�q	�s3 − �c3�

+ 4�qz�c3 + �s3� . �4�

�We have shortened c3	cos�3�c�, s3	sin�3�c�, �c is the chi-
ral angle of the nanotube, and used e	,	,	=−e	,z,z=−s3, and
ez,z,z=−e	,	,z=−c3.�

As explained in Ref. 16, one can simply “wrap around”
the elastic energy of graphene to deal with carbon nanotubes.
In the cylindrical geometry, with coordinates �r ,	 ,z� of Fig.
1, a minimal coupling between the tangential displacements
pi and the radial pr appears in Vel of Eq. �1� via p		

= ��	p	+ pr� /r.17 As explained, we assume no azimuthal de-
pendence, and thus 2o= ��zpz+ pr /r�, 2= �−�zpz+ pr /r�,
2�=�zp	. We are neglecting the breaking of the hexagonal
symmetry brought upon by the chiral vector that defines the
wrapping of the carbon nanotube. This symmetry breaking
allows for additional terms in Vel as curvature corrections.
The parameters of our elastic energy for graphene are also
corrected by curvature.

As for the low-energy electronic excitations in a semicon-
ducting nanotube, they can be described in terms of an en-
velope wave-function � �Ref. 19� of energy density

Ee��,p,q� = − �†�2�z
2

2m
� + Eep��,p,q� . �5�

Eep, the coupling between phonons and an injected electron
or hole, at lowest order both in the in plane elastic fields and
in the electron probability density 
�
2 can be deduced via
considerations of symmetry

Eep = 
�
2���qz/e + c3 + �s3� + ��o� �6�

�e is the bond length�. Physically, the term proportional to �
emerges in dielectric tubes from a deformation-induced
change in the bandgap, whereas the term proportional to ��
comes from the shift in energy at the K point of the Brillouin
zone due to second-nearest-neighbor atoms.6 In the context
of a simple tight-binding treatment,2 hopping integrals are
modulated by in plane elastic deformations:16 dt�l�=
−�êi

�l�êj
�l�pij +�êi

�l�qi /e are the three nearest-neighbor hopping
integrals along the three bonds of unit vectors ê�l�, whereas
dt��l�=−��âi

�l�âj
�l�pij are the hopping integrals along the three

directions â�l� of the next-nearest neighbors. ��, �� are often
called scaling parameters�.20 Following along the line of
Refs. 5 and 16, one can calculate the variation in the band

gap and of the energy at the K point under strain via hopping
integral modulation, and—after long yet not particularly in-
sightful calculations—deduce Eq. �6� and in particular

�� = � 3��,
�7�

� =
3

2
sp� .

The minus sign in the first equation is for electrons, the plus
for holes. Note that there is no change in sign for � in going
from holes to electrons. The other sign function is s1=−1
�s2=1� where p is defined as a function of n, m as p	��n
−m�mod 3�. This difference in sign behavior between � and
�� was previously recognized as causing indices dependence
and nonmonotonicity in the doping-induced shift of Raman
frequencies and anomalous bond contraction/expansion in
zigzag nanotubes.8–10,16 We will see that it controls chirality
dependent expansions vs contractions for hole or electron
self-trapping.

We assume that our fields only vary along the axial coor-
dinate z, an ansatz corroborated by previous numerical cal-
culations, as explained above.15 This treatment—we will
see—is self-consistent as it predicts very long polarons. The
Hamiltonian density for the entire system is then

H = − �†�2�z
2

2m
� + �cVel + Eep �8�

where Vel is given by Eq. �4�, Eep is given by Eq. �6�, and
c=2�r is the nanotube circumference. Minimization under
normalization of � with Lagrangia multiplier �p returns the
system of equations of equilibrium for our system,

4��̂ + �̂�o = − ��
�
2/�c ,

4�̂ − 4��q	s3 − qzc3� = − �c3
�
2/�c ,

4�̂� + 4��q	c3 + qzs3� = − �s3
�
2/�c ,

�9�
4��c3 + �s3� + ��

2qz = − �
�
2/e�c ,

4��s3 − �c3� − ��
2q	 = 0,

�p� =
− �2

2m
�z

2� + ���qz/e + c3 + �s3� + ��o��

which is linear in the elastic fields and can be solved easily
for them in terms of 
�
2.

We find for the local deformation induced by an injected
electron or hole the equations

o = � �o
�
2,

 = − sp� cos�3�c�
�
2, �10�

� = − sp� sin�3�c�
�
2,

which show that strain is higher in regions where the elec-
tron is localized. We find �o= 3��

4�c�vL
2−vT

2� , �= 3��1+l/e�
8�cvT

2 inversely
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proportional to the circumference. The sign in the first equa-
tion of �10� is plus for electrons and minus for holes. The
other two equations change sign depending on the chirality
of the nanotube via sp.

From Eq. �3� we have for the total elongation and torsion
of the tube �L=��o−�dz and r�	=��dz, and thus from
Eq. �10� and because of normalization of �, we obtain

�L = � �o + sp� cos�3�c�
�11�

r�	 = − sp� sin�3�c� ,

where, repetita juvant, the sign in the first equation is plus
for electrons and minus for holes. Note that the overall elon-
gation and torsion of the tube due to electron/hole injection
is independent of the actual shape of �. Unfortunately, that
also implies that self-trapped electronic excitations cannot be
recognized by global observations such has overall elonga-
tion, but solely via local mechanical features.

Equation �11� generalize to arbitrary chirality what al-
ready found by Nisoli et al.16 for doping of zigzag nano-
tubes. The first result from Eq. �11� is that electron/hole in-
jection induces no torsion for zigzag nanotubes �which
correspond to m=0, thus �c=0�, at least in our approxima-
tion that neglects curvature corrections. On the other hand,
torsion would be maximum for tubes approaching the arm-
chair configuration �the armchair themselves are metallic and
thus excluded from this study�: that would be n=m+1. Again
from Eq. �11� we obtain that elongation is always positive for
electrons in nanotubes with p=2, whereas is always negative
for holes in nanotubes with p=1. The maximum in both
cases is achieved by zigzag nanotubes ��c=0�. These results
are in agreement with the density-functional study of Ref.
14, who found elongation for electrons in �11,0� zigzag, and
contraction for holes in �7,0� zigzag.

Analysis of the general case requires knowledge of the
quantities �o, �. If ���o, the first equation of Eq. �11� tells as
that chirality can change the sign of �L and thus predicts
shortening for self-trapped electrons, yet elongation for
holes, in certain tubes. This seems to be the case, from a
rough estimate: we use e=1.42 Å and the Harrison scaling
for the hopping parameters,20 which are ��=2t�, �=2t, with
t�2.8 eV, t��0.68 eV.21 For the speeds of sound in
graphene we use vT=1.4104 m s−1, vL=2.16104 m s−1 as in
Mahan;16 finally from the density of graphite 2.26 gm cm−3

and the interlayer distance at 3.4 Å the surface density of
graphene can be estimated ��7.610−7 Kg m−2. We obtain
�o�2.510−2 Å2 /2r, ��8.710−2 Å2 /2r. For a larger nano-
tube of 1 nm in diameter, 103 electrons can give a 1 nm
elongation. Since the elongation and torsion are inversely
proportional to the radius of the nanotube: these effects be-
come stronger for small radii, for which our treatment is only
a first order approximation.

From Eq. �9� we find the inner displacement

q	 = 0
�12�

qz = − sp��l + l��
�
2,

with l�=4vT
2 /��

2�e+ l��0.35 Å �computed from vT
=1.4104 ms−1 and ��=31014 s−1�. Thus, the inner displace-
ment is always parallel to the nanotube axis, while its abso-
lute magnitude is independent of the chiral angle. On the
other hand, its orientation depends on the chiral indices, thus
suggesting that polarons can induce highly nonmonotonic
anomalous bond contractions/expansion and thus hardening/
softening of optical modes.8–10,16

Finally, by substituting the expression for the elastic fields
Eqs. �10� and �12� into the last equation of Eq. �9�, one finds
a nonlinear Schrödinger equation for the envelope �

�p� = −
�2

2m
��z

2� + 4�
�
2�� �13�

in which the reciprocal length � is found to be

�e =
�

4�c2t� �2�e + l��e + l + l��
vT

2e2 +
��2

4��̂ + �̂�
 �14�

where we have used the expression m=2��2 / �9ect� for the
effective mass of the electron obtained from the formula for
the band gap.2 The well-known self-bound solution of Eq.
�13�

��z,t� =��

2
cosh−1��z�e−i�pt/� �15�

corresponds to a polaron of energy �p=− �2�2

2m and length a
=�−1. Remarkably unlike the amplitude of the elastic defor-
mations, the length and thus the energy of the polaron does
not depend on the chiral angle. Also polaron length is the
same for electrons and holes. This latter statement is in con-
trast with results reported by Verissimo-Alves:14 while for
the �11,0� nanotube they find about the same polaron length
for electron �39 nm� and hole �40 nm�, for the �7,0� case the
electron polaron has a length of 59 nm, while the hole is 21
nm long. We suspect that the discrepancy originates from a
sign error in the quantity which Ref. 14 defines as �z, as
analysis of their Fig. 2 confirms. In our formalism and using
the Harrison scaling and parameters above, we have for a
zigzag nanotube �z=−3spt /2�3t� and estimate �z=
−6.3 eV for electrons, −2.2 eV for holes, for a �10,0�
nanotube—in the ballpark with the Ref. 14 values of −8.3,
−2.4 eV. Instead we find a sign mismatch for the �7,0�
where our estimates are +2.2 eV for electrons, +6.3 eV for
holes, whereas they have −1.6 eV, +7.8 eV. The polaron
length a=�−1 can be estimated from Eq. �14� to be of several
hundred angstroms for nanotubes of a few nanometers in
diameter, in agreement with estimate based on density func-
tional theory results.14

Finally, for completeness, we calculate the radial variation
in the nanotube �r /r= p		. From Eqs. �10� and �15� we see
that the maximum radial variation corresponds to the maxi-
mum of � �at z=0� or

�r

r
= �

�o

2a
− sp

�

2a
cos�3�c� , �16�

positive sign for electrons, negative for holes. There is al-
ways a radial shrinking in correspondence of self-trapped
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holes in nanotubes with p=2, and radial expansion for elec-
trons in nanotubes with p=1, as partially confirmed by
density-functional findings of Ref. 14.

While the casuistic of excitons is too rich to be dealt with
here,13 we can still offer a few considerations for the E11
case. As couplings of electron and holes with anisotropic
deformations o cancel each other, we must take ��=0 and
thus �o=0 in our equations. Hence, we can have optom-
echanical effects of both elongation or contraction, depend-
ing on the chiral indices, as predicted by Eq. �11� with �o
=0.

The treatment above applies to static polarons in not too
small nanotubes, as we neglect the breaking of honeycomb
symmetry brought up by the chiral vector. That would intro-
duce additional terms in the elastic energy in the form of
curvature corrections for very small radii.16 Also, for small
radii, orbital hybridization imposes a more sophisticate tight-
binding treatment. For the propagating polaron, another sym-
metry breaking comes from the velocity vector, directed
along the nanotube axis. Even for large nanotubes, we ex-

pects corrections �at lowest-order quadratic� in the speed of
the traveling polaron.22

In conclusion, we have calculated the elastic deformations
and electronic structure of self-trapped electronic states in
single wall carbon nanotubes. We found that elongation and
torsion depends highly non monotonically on the wrapping
indices, whereas the polaron length does not. The inner dis-
placement is always axial and changes orientation depending
on the chiral indices: this suggests a chirality dependent bond
lengthening/contraction and optical mode frequency shift.
Extension of this model to excitons is particularly interest-
ing.
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