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A protean topological soliton has recently been shown to emerge in systems of repulsive particles in
cylindrical geometries, whose statics is described by the number-theoretical objects of phyllotaxis. Here, we
present a minimal and local continuum model that can explain many of the features of the phyllotactic soliton,
such as locked speed, screw shift, energy transport, and—for Wigner crystal on a nanotube—charge transport.
The treatment is general and should apply to other spiraling systems. Unlike, e.g., sine-Gordon-like systems,
our soliton can exist between nondegenerate structures and its dynamics extends to the domains it separates;
we also predict pulses, both static and dynamic. Applications include charge transport in Wigner Crystals on
nanotubes or A- to B-DNA transitions.
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I. INTRODUCTION

The topological soliton, the moving domain wall between
degenerate structures, ubiquitously populates systems of dis-
crete symmetry, most notably the Ising model, and appears at
different scales and in many realms of physics �1�: in me-
chanical or electrical apparatus �1–3�, superconducting Jo-
sephson junctions �4�, nonperturbative theory of quantum
tunneling �5�, and particle physics �e.g., Yang-Mills mono-
poles and instantons �6�, sigma model lumps, and skyrmions
�7��.

Recently Nisoli et al. �8� discovered a novel kind of to-
pological soliton in systems of repulsive particles whose de-
generate statics is dictated by the intricate and fascinating
number-theoretical laws of phyllotaxis. As the phenomena
they describe are purely geometrical in origin, one would
expect this kind of “phyllotactic” soliton to play a role in
many different physical systems at different scales, wherever
repulsive particles in cylindrical geometries are present �8�.

Physically, the problem appears to be highly nonlocal, as
energy and momentum are not confined inside the soliton but
flows through it between the rotating domains it separates
�see below�. Yet, in this paper we show that a minimal, local,
and continuum model for the phyllotactic soliton that sub-
sumes the effect of the kinetic energy of the domains into a
modification of the potential energy in the familiar equiva-
lent Newtonian problem �5� can correctly predict its speed,
the transfer of energy between boundaries, the observed shift
in screw angle, and the charge-density variations, and it can
classify its rather complicated zoology.

II. FROM LEVITOV’S TO DYNAMICAL PHYLLOTAXIS

In the early 1990s, while studying vortices in layered su-
perconductors, Levitov �9� showed that a system of repulsive
particles on a long cylinder presents a rich degenerate set of
ground states; these can be labeled by number-theoretical
objects, the Farey classes, which arise in phyllotaxis, the
study of dispositions of leaves on a stem, and other self-
organized structures in botany �10�. While it is still debated
whether Levitov’s model is the best suited to explain botani-
cal phyllotaxis, it certainly imported the same mathematical

structures into the description of a variety of physical sys-
tems. Already, phyllotactic patterns had been seen or pre-
dicted outside the domain of botany �11�, in polypeptide
chains �12�, cells of Bénard convection �13�, or vortex lat-
tices in superconductors �9�.

Dynamical cactus

Recently Nisoli et al. �8� showed numerically and experi-
mentally that physical systems whose statics is dictated by
phyllotaxis can access dynamics in ways unknown in botany.
They investigated the statics and the dynamics of a proto-
typical phyllotactic system, the dynamical cactus of Fig. 1,
and found that, while its statics faithfully reproduce phyllo-
taxis, its dynamics reveal new physics beyond pattern forma-
tion. In particular, the set of linear excitations contains clas-
sical rotons and maxons; in the nonlinear regime, both
dynamical simulations and experiments revealed a novel
highly structured family of topological solitons that can
change identity upon collision and posses a very rich dynam-
ics �8�. Unlike other topological solitons, the phyllotactic one
separates domains of different dynamics; these domains can
store kinetic energy while rotating around the axis of the
dynamical cactus; energy and momentum flow across the
soliton. Moreover, as those domains are different, the kinks
among them have different shapes, characteristic speeds, and
behaviors under collision. In some simple cases the dynam-
ics of the soliton can be modeled heuristically via conserva-
tion laws, and certain observables—such as its speed—can
be computed in this way. A more general and complete ap-
proach would obviously be desirable.

The dynamical cactus, a simple phyllotactic system de-
picted in Fig. 1, consists of repulsive massive objects holo-
nomically constrained on rings rotating around a fixed axis:
let a=L /N be the distance between consecutive rings for a
cylinder of length L and radius R containing N objects, �i be
the angular coordinate of the ith particle, and �i=�i−�i−1 be
the angular shift between consecutive rings. The total poten-
tial energy for unit length is then
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V =
1

2L
�
i�j

U��i − � j� , �1�

where U is any long-ranged repulsive interaction that makes
the sum extensive and well behaved, such as a dipole-dipole
or a screened Coulomb.

It has been shown that stable structures correspond to spi-
raling lattices �8�, where each ring is shifted from the previ-
ous by the same screw angle �i=�. The energy of spiraling
structures as a function of � is reported in Fig. 1 for different
values of a /R: as a /R decreases, more and more commen-
surate spirals become energetically costly, independent of the
repulsive interaction used; for every j, there is a value of a /R
low enough such that any commensurate spiral of screw
angle 2�i / j with i , j relatively prime, becomes a local maxi-
mum, as particles facing after j rings become nearest neigh-
bors in the real space. The minima also become more nearly
degenerate as the density increases since, for angles incom-
mensurate to �, each particle is embedded in a nearly uni-
form incommensurately smeared background formed by the
other particles �8�.

One-dimensional degenerate systems are entropically un-
stable against domain wall formation �14�. Kinks between
stable spirals were found numerically and experimentally

�8�. Numerically, it was proved that these kinks can propa-
gate along the axis of the cylinder. Experimentally, the dy-
namical cactus was observed expelling a higher-energy do-
main by propagating its kink.

As discussed in Ref. �8� such axial motion of a kink be-
tween two domains of different helical angles confronts a
dilemma: helical phase is unwound from one domain at a
different rate than it is wound up by the other. Numerical
simulations show that the moving domain wall solves this
problem by placing adjacent domains into relative rotation
�see supplementary materials in Ref. �8� for an animation�.

Detailed dynamical simulations reveal a complex zoology
of solitons, along with an extraordinarily rich phenomenol-
ogy: kinks of different species merge, decay, change identity
upon collision, and decompose at high temperature into a sea
of constituent lattice particles.

III. CONTINUUM MODEL

A. Lagrangian

To describe domain walls between degenerate structures
of the dynamical cactus, we propose a minimal continuum
model. First, in the continuum limit, we promote the site
index i to a continuum variable: ia→z, �i→��z�, the screw
angle is now �i→��z��a�z� �later we will just assume a
=1�. A spiral corresponds to ��z�=�z��z�=const. A kink cor-
responds, in the �, z diagram, to a transition between two
constant values.

We seek a model that is local and returns the right energy
when the system is in a stable configuration. To express the
cost in bridging two stable domains, we introduce a general-
ized rigidity �. We thus propose the �linear density of� La-
grangian as

L =
1

2
I�̇2 − V��z�� −

�

2
��z

2��2. �2�

The first term is the kinetic energy �I�Ia−1, with being the
moment of inertia of a ring�. The second accounts locally for
the potential energy, so that the Hamiltonian from Eq. �2�
returns the right energy for a static �or uniformly rotating�
stable spiral like those observed experimentally. The last
term, the lowest-order correction allowed both in the field �
and in its derivatives, conveys the rigidity toward spatial
variations of the screw angle and ensures that a kink always
corresponds to a positive-energy excitation.

The Euler-Lagrangian equation of motion follows directly
from Eq. �2� as

I�t
2� = �zV���z�� − ��z

4� �3�

and corresponds to the conservation of the density angular
momentum I�t�, where the density of current of angular mo-
mentum is V���z��−��z

3� �V� is the derivative of V with re-
spect to its argument and represents the local torque�.

In the following we will prove that, whatever is the pre-
cise form of the actual potential V, and the geometric param-
eters of the problem, there exist solitonic solutions of Eq. �3�
between local minima of V. We will show how to derive
many qualitative and quantitative results by reducing the
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FIG. 1. Top: the dynamical cactus, repulsive particles �here di-
poles�, on the surface of a cylinder. a is the distance between con-
secutive rings and � is their angular shift. The dashed line is the
so-called “generative spiral” �10�. Bottom: for a dipole-dipole inter-
action, energy V versus screw angle � �semilogarithmic plot� for
halving values of the parameter a /R starting from 0.5 �lowest line�,
in arbitrary units �.
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problem to an equivalent one-dimensional Newtonian equa-
tion, as customary for these kinds of problems �5�, yet with a
significant twist.

B. Equivalent Newtonian picture

We seek a uniformly translating solution of Eq. �3�

� = ��z − vt� + wt , �4�

where the constant w accounts for angular rotation invari-
ance, reflects the underlying transverse structure in our sys-
tem �which is lacking in Klein-Gordon-like systems� and is
the source of much of the unique physics. By defining s=z
−vt, we find �t

2�=v2d2� /ds2, which leads to the equivalent
Newtonian equation �5�

�
d2�

ds2 = − 	���� �5�

whose equivalent potential 	 is given by

	��� = 1
2v2I�� − �̃�2 − V��� . �6�

�̃ is a constant that is sometimes useful to redefine as �̃
�
 / �Iv2� in terms of 
, which has the dimension of a torque.
We will find that in studying static solitons it is easier to use

, while for dynamical ones �̃ is preferable.

In the equivalent Newtonian picture a soliton corresponds
to a trajectory ��s� of a point particle that starts with zero
kinetic energy on the top of a maximum of 	��� and, in an
infinite amount of “time” s, reaches the neighboring maxi-
mum of equal height as detailed in Fig. 2. A similar treatment
applies to Klein-Gordon-like solitons and tunneling prob-
lems �5,14�. Yet the presence of an extra quadratic term
translates in completely different physics and accounts for
the dynamics of the domains.

C. Shift from stability

Because of the quadratic term 1
2v2I��− �̃�2 in the expres-

sion of 	, and unlike the Klein-Gordon-like soliton, our soli-
ton in general does not connect �1, �2, which are local
minima of V; rather it goes from �̄1=�1+�1 to �̄2=�2+�2,
bridging spirals whose screw angle is slightly shifted away
from stability, with the shift increasing with the speed of the
kink �Fig. 2�.

We find then a most interesting result: a moving soliton
cannot connect two stable structures. At most, it can bridge a
stable spiral �1 with one shifted away from equilibrium �̄2
=�2+�2, if we choose �̃=�1, but only if V��1��V��2�.

These shifts away from stability were observed in dy-
namical simulations �integrating the full equation of motion
for the discrete system of particles interacting via Eq. �1�� in
the form of precursor waves propagating at the speed of
sound in front of the soliton as in Fig. 3. They correspond to
the physically intuitive fact that, in order to move, the kink
needs a torque to propel it.

Clearly, static solitons �v=0� can bridge stable spirals if
these are degenerate, i.e., V��1�=V��2�. On the other hand,
if two domains are degenerate, and are connected by a mov-
ing soliton, they both need to be shifted.

D. Boundary conditions

The conditions of existence of a soliton between the
asymptotic domains �̄1 , �̄2 are

	���̄1� = 	���̄2� = 0,
�7�

	��̄1� = 	��̄2� .

Now, from Eq. �4�, we obtain the expression of the angular
velocity for a soliton of speed v,

�̇�s� = − v��s� + w , �8�

which implies that, in general, as the soliton travels along the
axis, one or both of its two domains must be set into rotation
and at different angular velocities. As mentioned, this rota-
tion of the domains is indeed observed in dynamical simula-
tions �8� as the mechanism with which the soliton unwinds
and rewinds spirals of different gaining angles.
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FIG. 2. �Color online� The equivalent Newtonian picture, stan-
dard for Klein-Gordon-like solitons or for tunneling problems �5�: a
soliton is a solution of Eq. �5� that corresponds to a trajectory ��s�
�red solid line �light gray�� of a point particle that starts and ends in
two equally valued maxima �horizontal dotted red lines �light gray��
of the equivalent potential energy 	���= 1

2v2I��− �̃�2−V��� �black
solid line�. As the kinetic energy must be zero on those maxima, it
takes the Newtonian trajectory an infinite amount of time s �i.e.,
“time” in the Newtonian picture, space in the soliton picture� to
reach the “top of the hill” with asymptotic speed equal to zero �5�.
Unlike the Klein-Gordon-like case, the presence of the quadratic
term 1

2v2I��− �̃�2 �dashed line�, which accounts for the kinetic en-
ergy of the domains, slightly shifts the asymptotic value of the
kinks �red dotted lines� away from stable static structures �1 ,�2

�black dotted lines�, the minima of the real potential energy V���
�dashed line�. Instead, the soliton connects spirals of angle �̄1

=�1+�1, �̄2=�2+�2, which in general are not stable structures of
V. The extra quadratic term also allows solitons among nondegen-
erate configurations and brings the speed of the soliton v into the
picture. �Everything is in arbitrary units. The soliton is obtained by
numerical integration of the Eq. �5� using the energy profile por-
trayed in the figure.�
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Unlike Klein-Gordon-like one-dimensional topological
solitons, which separate essentially equivalent static domains
and can travel at any subsonic speed �14�, we see that phyl-
lotactic domain walls instead separate regions of different
dynamics: energy and angular momentum flow through the
topological soliton as it moves, rather than being concen-
trated in it; as mentioned above, this was used to show heu-

ristically that its speed v is tightly controlled by energy-
momentum conservation, phase matching at the interface,
and boundary conditions �8�. We will show how a more pre-
cise version of those heuristic formulas can be deduced
within the framework of our continuum model and in a more
general fashion.

The angular speed of rotation of the domains depends on
the parameter w, which along with �̃ is a constant to be
determined. On the other hand, we can show that energy
conservation constrains w to �̃. In fact, when the two do-
mains are shifted from equilibrium, and thus subjected to a
torque, energy flows through the boundaries of the system as
the domains rotate. By imposing no energy accumulation in
the kink, we fix w in Eq. �4� in the following way: the power
entering the system at the asymptotic boundaries can easily
be deduced via the Noether theorem to be

j� = − lim
s→�

V�„��s�…�̇�s� , �9�

which is, not surprisingly, the torque times the angular speed.
By requiring j+�= j−� an equation for w , �̃ is found as

w = v��̄1 + �̄2 − �̃� , �10�

which will come in hand in many practical cases.

IV. ZOOLOGY

A. Static kinks

Let us explore static kinks first. Equations �7� reduce to


 = V���̄1� = V���̄2� ,
�11�


��̄1 − �̄2� = V��̄1� − V��̄2� .

The first of the two Eqs. �11� tell us that 
 is a torque applied
at the asymptotic boundaries of the system, while the second
shows that no torque is necessary if the topological soliton
connects degenerate structures, as we anticipated. Unlike to-
pological solitons of the Klein-Gordon class, here static
kinks are allowed between nondegenerate domains through
an applied torque that shifts the two structures out of the
minima of V.

B. Solitons moving between nondegenerate domains

Unlike the Klein-Gordon-like Lagrangian, our Lagrangian
is not invariant under Poincaré group. Our traveling soliton
is not just a boost of the static one, as it is clear from Fig. 2.
In particular the shifts of the domains from stability increase
with the speed v. By expanding V��� around its local
minima and using Eq. �6�, one finds easily that small shifts
are proportional to the square of the speed of the soliton, or
�1, �2�v2.

Let us consider a particular case of practical importance.
Kinks between nondegenerate structures can sometimes be
found in the experimental settings, because of static friction,
after having annealed mechanically the cactus with free
boundaries. If a small perturbation is given, enough to over-
come that friction, the dynamical cactus will expel the
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FIG. 3. �Color online� Dynamical simulation for the collision or
conversion of two solitons, emitted from free boundaries of a dy-
namical cactus. Top panel: screw angle vs space �in number of
rings� and time �in seconds�; note the elastic wave preceding the
soliton. Second panel: energy per particle �mJ� vs screw angle �rad�
for our system ��1=1.79 rad, �2=1.43 rad, �3=2.40 rad�; the two
kinks—before collision—connect a high �inner: �1� to a low �outer:
�2� energy domain; after collision a low �inner: �3� to a high �outer:
�2�. Third panel: angular speed �s−1� vs space at a given time: the

speed of the soliton can be extracted as v=��̇ /��=22.1 s−1 �pre-
dicted: 23.4 s−1�. Fourth panel: the precursor; plot of the screw
angle vs space at different times while the soliton and its preceding
wave advance. The amplitude �1 of the precursor is predicted via
Eq. �13� as �1=�1− �̄1=−0.043 rad, in excellent agreement with
numerical observations. The simulation uses the experimental den-
sity and the magnetic interaction as in Ref. �8�. �See supplementary
materials in Ref. �8� for an animation.�
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higher-energy domains by propagating the kink along the
axis �8�. Figure 3 reports a dynamical simulation of this case
obtained by integrating the full equation of motion for the
discrete system of particles whose interaction is given in Eq.
�1�.

Let us show how our continuum model can reproduce a
soliton between nondegenerate minima and provide quanti-
tative predictions. Free boundaries imply j�=0: since v
�0, V� cannot be zero on both boundaries, as we saw before,
nor can the angular speed of rotation of the domains be. The
only possible free boundaries solution is that one has V�=0
on one side and �t�=0 on the other. Hence the soliton must
connect, say, �̄2=�2 to �̄1=�1+�1, with V��2��V��1�,
which fixes �̃=�2= �̄2. Equations �7� then fix the speed of
the soliton as

vk
2 =

2�V̄

I��̄2 �12�

with �V̄=V��̄1�−V��̄2� and ��̄= �̄2− �̄1 �in this particular
case, �2= �̄2�. Equation �12� corrects an earlier formula
found heuristically via energy conservation, which neglected
the shifts �8�. From the angular velocities of rotation of the
domains in the dynamical simulation �Fig. 3, third panel�, a
speed of 22.1 s−1 can be extracted and compared with the
value 23.4 s−1 predicted by Eq. �12�: the small discrepancy
is likely due to energy dissipation into phonons—a known
effect for solitons in discrete systems.

From Eq. �10�, we find w=v�̄2 which together with Eq.
�8� implies that the region of lower energy rotates uniformly,
while that of higher energy, which is shifted, remains still:
since there is no energy flow through the boundaries, the
kink transforms the potential-energy difference between the
two domains into the kinetic energy of rotation—and vice
versa, depending on its direction of propagation. �Only
propagation toward lower potential energies was observed
experimentally �8�.�

By expanding V around �1, V� 1
2 Ic1

2��−�1�2, where c1 is
the speed of sound in the spiral of angle �1, we obtain an
approximate expression for the shift of the screw angle in the
region of higher energy

�1

��
=

v2/c1
2

1 − v2/c1
2 �13�

that clearly holds for v�c1. As the system is prepared in a
stable nonshifted configuration of angle �1, a precursor in
front of the soliton propagates to accommodate the shift �1,
as it was seen yet not understood in the dynamical simulation
reported in Fig. 3 �8�. Equation �13� applied to the experi-
mentally measured V��� employed in the simulation predicts
a shift �1=−0.043 rad, which fits the results of the simula-
tion well �Fig. 3, last panel�.

We will not deal here with collisions between solitons.
Yet, even without the knowledge of the precise form of V, a
few considerations can be made on asymptotic states of the
collision depicted in Fig. 3: the domains beyond the ap-
proaching pair of kink-antikink rotate with opposite angular

velocity �̇=v��, with v given by Eq. �12�. After the colli-

sion v changes sign, and so must ��. The infinitely long
domains cannot invert angular velocity instantaneously: the
emerging asymptotic configuration must be that of a pair of
different kink-antikinks, connecting the old asymptotic do-
main with a different nearest neighbor, hence the collision
metamorphosis already discussed in Ref. �8�.

C. Solitons moving between degenerate domains

To investigate the degenerate case, typical of dynamical
phyllotaxis of high R /a ratios �Fig. 1�, we consider for sim-
plicity the potential V of Fig. 4; degeneracy requires now that
�̃= ��1+�2� /2, and if the potential is symmetric as in the
figure, both boundaries are equally shifted in opposite direc-
tions and subjected to a torque of opposite sign and equal
intensity �from Eqs. �7��

�
� =
I

2
v2��̄2 − �̄1� . �14�

Exactly, as in the case of the boosted Klein-Gordon-like
one, our symmetric soliton becomes shorter as v increases
�Fig. 2�, although via a completely different mechanism. In
the Klein-Gordon-like soliton, shortening is a consequence
of relativistic contraction of the Poincaré group. Instead, in
our case, v raises the difference between the maxima of 	
and the minima among them. That means higher ‘‘kinetic
energy’’ in the “valley” of 	 for the equivalent trajectory,
thus higher values of d� /ds, and hence a shorter soliton.

Equations �8�–�10� tell us that the two domains rotate in
opposite direction with angular velocity of the same intensity

��̇� = v��̄2 − �̄1� . �15�

In practice, the system acts like a mechanical inverter of

rotation that transmits a power 
�̇= Iv3��̄2 /2 along the tube.
For any given velocity, many solitons between degenerate
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FIG. 4. �Color online� Equivalent Newtonian diagram �see cap-
tion of Fig. 2 for explanation� for symmetric solitons between de-
generate spirals. As the quadratic term raises all the maxima of
−V���, solitons with the same speed but connecting different do-
mains are possible under different applied torques. The smallest
kink �solid red line �light gray�� and a larger kink �solid blue line
�dark gray�� are shown.
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structures are allowed, corresponding to different applied
torques, as in Fig. 4.

D. Pulses: Propagating and frozen in

The equation of motion also predicts pulses, both dy-
namic and static �frozen in�. The top panel of Fig. 5 shows
the pulse soliton in the equivalent Newtonian picture as a
trajectory falling from a local maximum of 	, say �1, and
coming back to it without reaching the neighboring �̄2 be-
cause of a higher potential barrier.

Clearly, pulses possess less inertia than kinks since only
the region occupied by the pulse rotates during propagation.
Theory suggests that these pulses should be able to propagate
with free boundaries and that no applied torque is
necessary—although solutions corresponding to different
boundary conditions, and hence applied torque, can be found
as well by choosing �̃��1.

Let us consider pulses in stable structures and thus �̃
=�1. When v�c, �the speed of sound in the spiral of angle
�1� then �1 becomes a minimum for 	 and we obtain a
solution that oscillates around �1: the speed of sound is the

upper limit for the velocity of the pulse soliton. As v de-
creases three things can happen.

If V��1��V��2�, then pulses exist for vk�v�c, with vk
given in Eq. �12�. As v approaches from above the critical
value vk, the pulse asymptotically stretches to a pair of kink
and antikink between domains �1 and �̄2, placed at infinite
distance from each other, traveling at the same speed in the
same direction. If V��1�=V��2�, the situation is the same as
above, yet the critical value for asymptotic stretch into kink
and antikink is v=0. If V��1��V��2�, we have a pulse soli-
ton for every value of v�c. As v goes to zero, the pulse
freezes into a static one. Hence, in the absence of torque at
the boundaries, our theory predicts that static pulses can ex-
ist in every structure, except in the lowest-energy one.

These frozen-in kinks that were indeed observed experi-
mentally �but not understood� in higher-energy spirals per-
haps arise from a kink-antikink symmetric collision �15� at
the interplay with friction. Figure 5, bottom, shows in solid
blue �dark gray� line the data from the experimental appara-
tus, along with our frozen-in soliton calculated within our
continuum model, and the dotted red �light gray� line shows
the data for the energy 	=V �solid black line� empirically
measured in the experimental apparatus.

V. AXIALLY UNCONSTRAINED CASE

We have since now considered only an axially constrained
case where the repulsive particles were allowed to rotate
around an angular coordinate, but not to translate along the
axis. Nonlocal optimization via a structural genetic algorithm
has shown that the more general case of axially uncon-
strained particles on a cylindrical surface reproduces the
same fundamental statics of the axially constrained one, i.e.,
the same spiraling lattices �15�. Numerical simulations have
also shown kinks propagating among the spirals �15�. The
most significant difference with the axially constrained case
is a drop in density in the region of the kink to locally relieve
the mismatch. If these particles were charged, the drop in
density would endow the soliton with a net charge: the phyl-
lotactic soliton could function as a charge carrier. In fact,
Wigner crystals of electrons on large semiconducting tubes
are candidate environments for the phyllotactic soliton at
nanoscale as discussed in Ref. �8�. A crystal pinned by the
corrugation potential and/or impurities will not slide along
the tube under a weak enough external field.

A simple extension of the continuum model can easily
incorporate variations in the linear density and allow inves-
tigation of the possibility of charge transport by the phyllo-
tactic soliton. We rescale the interaction as

V → 	 �

�o

2

V , �16�

where � is the linear density in the presence of axial dis-
placement, whereas �o=N /L. Let �=dz /a be the relative
axial displacement; then, if �z��1 we have � /�o=1 /
�1+�z��. The new Lagrangian reads

Ω2 Ω3 2Π�Ω2

��Ω�Theor. Exp.

Ω2Ω
�
1�Ω1 Ωmax

�V�Ω�

��Ω�

1

2
Iv2�Ω�Ω� �2

Pulse s�s�Ω�

FIG. 5. �Color online� Equivalent Newtonian diagram �see cap-
tion of Fig. 2 for explanation� for pulses. Top: a traveling pulse
among degenerate structures is possible because the nonzero speed
v raises the maximum of 	. Bottom: theoretical �red dashed �light
gray�� and experimental �blue solid �dark gray�� frozen-in pulse on
the measured energy curve of the dynamical cactus �8�.
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L =
1

2
I�̇2 +

1

2
IR−2�̇2 −

V��z��
�1 + �z��2 −

�

2
��z

2��2. �17�

To gain insight regarding the shape of the soliton, we restrict
ourselves to the simpler static case with no applied torque.
By variation in the Lagrangian in Eq. �17�, one obtains

d2�

dz2 = −
V����
1 + �z�

,

�18�

�z� 2V���
�1 + �z��3� = 0,

which, along with the normalization condition for �, returns
the density of a static soliton �kink or pulse� as a function of
��z�,

��z�
�o

= 	 Vo

V��̄�z��

2/3

. �19�

Here Vo is the asymptotic value of V at the boundaries. The
static kink �̄�z� can be found as the solution of the equivalent
Newtonian equation �5� with potential

	��� = − Vo
2/3V���1/3. �20�

Now, V1/3 and V have the same set of local minima, and the
same ordering among their values: the extension to axial
displacements does not alter any of the conditions for the
existence of kink and pulse solitons, at least for the static
case.

Equation �19� implies, as expected, a drop in density simi-
lar to a dark soliton in the region of the kink, and thus, for a
crystal of charges, a net charge. In particular, the higher the
potential barrier between the two domains, the lower the
density at the center of the kink. Also, from Eq. �20� we can
see that allowing an extra degree of freedom makes the kink
longer. In practice the kink can take advantage of density
reduction to relax the potential barrier between the two do-
mains and can thus be longer. All of this is detailed in Fig. 6,
where the solitons for both the axially constrained and un-
constrained cases �along its variation in density� are reported
for the same interaction among particles. Analogous consid-
erations apply to static pulses. The case of the axially uncon-
strained traveling soliton is more complicated and will not be
treated here.

VI. CONCLUSION

We have introduced a minimal, local, and continuum
model for the phyllotactic soliton and showed that its predic-
tions are in excellent agreement with numerical data, that it
provides a tool to calculate otherwise elusive quantities, such
as charge transport, energy-momentum flow, speed of the
soliton, and angular velocities, and that it could be used in
the future to develop its thermodynamics.

Our continuum model should be applicable to many dif-
ferent physical systems. As discussed in Ref. �8�, dynamical
phyllotaxis is purely geometrical in origin, and thus the rich
phenomenology of the phyllotactic soliton could appear
across nearly every field of physics. Indeed phyllotactic do-
main walls have already been seen, but not recognized, in
simulations �16� of cooled ion beams �17� where the system
self-organizes into concentric cylindrical shells. Colloidal
particles on a cylindrical substrate provide a highly damped
version �18�, and polystyrene particles in air �as used to in-
vestigate �19� the Kosterlitz, Thouless, Halperin, Nelson, and
Young theory of two-dimensional melting �20�� have reason-
ably low damping and long-range interaction.

Yet it should be noticed that our model has a range of
application much wider than pure dynamical phyllotaxis.
Domain walls in any spiraling system whose energy depends
on the screw angle of the spirals, which manifest different
stable spiraling structures and where a generalized rigidity
can be reasonably introduced to describe transitions between
different spirals, should be described by such formalism.
Kinks in spiraling proteins and in particular transitions be-
tween A- and B-DNA might be approachable this way.
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�V�Ω�

��Ω�

FIG. 6. �Color online� Equivalent Newtonian diagram for both
axially constrained and unconstrained soliton. In blue dashed �dark
gray� curve, the axially constrained soliton among the stable struc-
tures �1, �2 is shown. The two red solid curves �light gray� depict
the soliton in the axially unconstrained case, which is longer, and its
corresponding drop in density �.
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