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Outline

Last week:

¢ Line search and trust region methods for unconstrained
optimization.

e Started discussion of optimality conditions for constrained
optimization.

Today:

e Optimality conditions for constrained optimization.

¢ Solving quadratic problems with equality constraints

e Solving quadratic problems with inequality constraints

Next week:
e Sequential Quadratic Programming
® [nterior-Point Methods
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Constrained Nonlinear Optimization Problems

min f(x) f:R"—R

XERN :

St CE( ) O CEZR”—)R”E
c(x)<0 c:R" — R

¢ We assume that all functions are twice continuously
differentiable.

e Often called “Nonlinear Program” (NLP).

¢ For problems with convex objective and linear equality and
convex inequality constraints, every local minimizer is a global
minimizer.
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Optimality Conditions: Equality Constraints

min
XERN
S.t.

f(x)
ce(x)=0
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Optimality Conditions: Equality Constraints

min
XERN
S.t.

f(x)
ce(x)=0
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Optimality Conditions: Equality Constraints

min  f(x) \f ;
XERN W
s.t. ce(x)=0 Vep(oN#

7 f —-Vf cp(x

¢ Moving along projection of —V f(x) onto tangent space of
feasible set decreases objective.
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Optimality Conditions: Equality Constraints

¢ Moving along projection of —V f(x) onto tangent space of
feasible set decreases objective.
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Optimality Conditions: Equality Constraints

¢ Moving along projection of —V f(x) onto tangent space of
feasible set decreases objective.

¢ At local minimum, projection of —V f(x) must be zero.
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Optimality Conditions: Equality Constraints

¢ Moving along projection of —V f(x) onto tangent space of
feasible set decreases objective.

¢ At local minimum, projection of —V f(x) must be zero.

e For this, —V{(x*) must be linear combination of constraint
gradient:

|-VI(x") =Vee(x') Ae|  Ae€R
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Optimality Conditions: Equality Constraints

¢ Moving along projection of —V f(x) onto tangent space of
feasible set decreases objective.

¢ At local minimum, projection of —V{(x) must be zero.

e For this, —Vf(x*) must be linear combination of constraint
gradients:

—VI(x*) = Y15 Ve j(x) Mg Ag € R

Los Alamos National Laboratory UNCLASSIFIED Andreas Wé&chter | 4



UNCLASSIFIED

Optimality Conditions: Equality Constraints

o 1

s.t. ce(x)=0

¢ Moving along projection of —V f(x) onto tangent space of
feasible set decreases objective.

¢ At local minimum, projection of —V{(x) must be zero.

e For this, —Vf(x*) must be linear combination of constraint
gradients:

—VI(x*) = Z 1VCEJ( )/\El Vee(x™) Ae A € RE

¢ Notation: Columns of Vce(x*) are the constraints gradients.
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Optimality Conditions: Inequality Constraints

w1
s.t. ce(x)=0
c(x) <0
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Optimality Conditions: Inequality Constraints

w1
s.t. ce(x)=0

c(x) <0 S
LVCI

¢ First local minimum:
— Inequality constraint is inactive (not binding), it might as well not be
there.
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Optimality Conditions: Inequality Constraints

w1

s.t. ce(x)=0

c(x)<0 S
LVCI

¢ First local minimum:
— Inequality constraint is inactive (not binding), it might as well not be
there.

e Same relationship as before:

[—Vi(x") = Vee(x') - Ag Ae €R
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Optimality Conditions: Inequality Constraints

w1

s.t. ce(x)=0

c(x) <0 S
LVCI

¢ First local minimum:
— Inequality constraint is inactive (not binding), it might as well not be
there.

e Same relationship as before:

|—VA(x") = Vee(x') - Ae + Ve (x) - M| Ae€R, A =0
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Optimality Conditions: Inequality Constraints

i, 1)
s.t. ce(x)

=0
C/(X) <0
Ve (z*) F«‘Vf(zx)

e Second local minimum:
— Inequality constraint is active.
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Optimality Conditions: Inequality Constraints

Ver(z*) FQ‘V](OX)

e Second local minimum:
— Inequality constraint is active.

e Projection of —Vf(x*) onto tangent space of “cz(x) = 0” points
into direction that violates “c;(x) < 0”.
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Optimality Conditions: Inequality Constraints

Ve (z*) FQ‘V](([*)

e Second local minimum:
— Inequality constraint is active.

e Projection of —Vf(x*) onto tangent space of “cz(x) = 0” points
into direction that violates “c;(x) < 0”.

’*Vf(X*)ZVCE(X*)-)\E-{-VC/(X*)-)\/‘ AEER, >0
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Optimality Conditions: Inequality Constraints

in f
i 7

S.t. CE(X)

=0
c(x)<0

¢ Another point where inequality is active.
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Optimality Conditions: Inequality Constraints

in f
i 7

S.t. CE(X)

=0 “E\T) o
c(x)<0 \ e
Ver () r‘

¢ Another point where inequality is active.
¢ Projection of —Vf(x) onto tangent space of “cz(x) = 0" points
into direction that satisfies “c;(x) < 0”.
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Optimality Conditions: Inequality Constraints

¢ Another point where inequality is active.

¢ Projection of —Vf(x) onto tangent space of “cz(x) = 0" points
into direction that satisfies “c;(x) < 0”.

— Can move into this direction and improve objective.

Los Alamos National Laboratory UNCLASSIFIED

Andreas Wéachter | 7



UNCLASSIFIED

Optimality Conditions: Inequality Constraints

Ver(x)

¢ Another point where inequality is active.

¢ Projection of —Vf(x) onto tangent space of “cz(x) = 0" points
into direction that satisfies “c;(x) < 0”.

— Can move into this direction and improve objective.

‘*Vf(X):VCE(X)~>\E+VC/(X)-)\/‘ AEER, A\ <O
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Summary of Conditions

e Projection of —Vf(x*) onto the right tangent space must be zero:

’ VI(x*)+ Vee(x* ) e + Ve (x* )\ = O‘

for some Lagrangian multipliers A\r € R and A\, € R,
— There is no direction that decreases objective and stays feasible.

¢ Releasing active inequality does not make it possible to improve

objective:

¢ Only active constraints can contribute to the (local) optimality
conditions:

cj(x*)-Aj;=0] forallj=1,....n

— If constraint is not active, multiplier must be zero.
— This is called complementarity condition.
— “Atleast one of ¢;;(x*) and A}, has to be zero.”
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KKT Conditions

Theorem (First-Order Necessary Optimality Conditions)
Let x* be a local minimizer and suppose that f, cg, and c; are
continuously differentiable. Further assume that a “constraint
qualification” holds. Then there exist Lagrangian multipliers
Mg € R and \j € R™ so that the following conditions hold:

VIH(x*)+ Vee(x*)Ag + Ve (x*)A\] =0
ce(x*)=0
c(x*) <0
N> 0
Crj(x*)-Aj;=0 forallj=1,....n

e These conditions are called the KKT conditions.
— Named after Karush, Kuhn, and Tucker.
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Existence of Multipliers

min
xER2

f(x) = x1

c2()

st ci(x)=x —x3 <0

=-—x<0
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Existence of Multipliers

min  f(x) = x
xER2 () !

st ci(x)=x —x3 <0
C(x)=—x2<0

ﬂ =

e Optimal solution: x* = (0,0)7
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Existence of Multipliers

min
xER2
s.t.

C(x)=—x2<0

e Optimal solution: x* = (0,0)7
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Existence of Multipliers

min  f(x) = x
xER2 () !

st ci(x)=x —x3 <0
C(x)=—x2<0

¢ Optimal solution: x* = (0,0)7
e —V{(x*)is not a linear combination of constraint gradients!
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Existence of Multipliers

min  f(x) = x
xER2 () !

st ci(x)=x —x3 <0
C(x)=—x2<0

¢ Optimal solution: x* = (0,0)7
e —V{(x*)is not a linear combination of constraint gradients!
¢ No Lagrangian multipliers exist.
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Constraint Qualifications

¢ A constraint qualification is a condition that ensures the
existence of Lagrangian multipliers.

¢ |f no multipliers exist, algorithms that seek KKT points might have
difficulties or fail!

¢ Ipopt heuristic: “c/(x) < bound_relax factor”
— Relaxed solution more likely to satisfy constraint qualification.

Examples:

¢ Linear-Independence Constraint Qualification (LICQ)
— The constraint gradients for all active constraints are linearly
independent.
¢ All constraints are linear, e.g., Linear Programs.

e Mangasarian-Fromovitz Constraint Qualification (MFCQ)
— Looser than LICQ.
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Lagrangian Function

(NLP)

¢ The Lagrangian function for (NLP) is defined as

L(X, e, i) = F(x) + ce(X) T Ae + ci(x) T\

* Helps to express relationships and optimality conditions.
e For example, first equation in KKT conditions:

0 = VA(X*) + Vee(X)NE + Ve (XA = ViL(X*, AE, )
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Null Space of Constraint Gradients

i, 1) [ N S
s.t. CE(X) =0 V(‘E(«l?)

P f —Vf cp(x)
¢ |t only matters how the objective changes within the feasible set.
¢ Look at directions in the null space of constraint gradients:

No(x*) = {d € R" : Vcg(x*)"d = 0}
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Second-Order Optimality Conditions For

Equality-Constrained Problems

i, 1)

s.t. ce(x)=0

¢ Hessian of Lagrangian function

V2 L(X*,\E) )+ Z V2Ce j(X*) - Ng,

captures curvature of objective and constraints.
® Necessary second-order optimality condition:

dTVv2, L(x*,\E)d > 0 for all d € No(x*)
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Strict Complementarity

Definition (Strict Complementarity)

Let x* a local minimizer and A\ and A\ be Lagrangian multipliers so
that the KKT conditions hold. We say that strict complementarity
holds if

cj(x)<0 or X,;>0 forallj=1,....n

¢ [f an inequality is active, its multiplier is non-zero.

e Then the inequality constraint is “strongly binding”; we can treat it
as equality constraint in the 2nd-order optimality conditions.
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Null Space of Active Constraints

Active set:

¢ A constraint that holds with equality at x € Q is “active at x”.
* Active set A(x) for x € Q:
— Indices of all constraints that are active at x, including all cg.

Null space of active constraint gradients:

No(x*) = {d € R" : V¢i(x*)Td = 0forall j € A(x")}
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Necessary Second-Order Optimality Conditions

Theorem (Necessary Second-Order Optimality Conditions)

Let x* be a local minimizer with KK'T multipliers \g and \} at which
LICQ and strict complementarity holds. Then

dTV2 L(x*, Ng, A\[)d > 0 forall d € Ne(x*)

Theorem (Sufficient Second-Order Optimality Conditions)

Let x*, A\, and \} be such that the KKT conditions and strict
complementarity holds. If

dTV2,L(x*, Ng, Aj)d > O forall d & Ng(x)\ {0}

then x* is a strict local minimizer.

Los Alamos National Laboratory UNCLASSIFIED Andreas Wachter | 17



UNCLASSIFIED

Quadratic Programming

;2}1{” %XTQX +97x Q € R™" symmetric
st. Aex+be =0 (QP) Ag e R™*" b e R"E
Ax+b <0 A e R b e R™

Many applications (e.g., portfolio optimization, optimal control).

Important building block for methods for general NLP.
Algorithms:

— Active-set methods
— Interior-point methods

Let’s first consider equality-constrained case.

Assume: all rows of A are linearly independent.
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Equality-Constrained QP

1T T
e =)
st.Ax+b=0

First-order optimality conditions:

Qx+g+A"A=0
Ax+b=0

Find stationary point (x*, A*) by solving the linear system

2 5] (0)--C)
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KKT System of QP

Q AT (x\_ (g
A 0] \\N) b
e Whenis (x*, \*) indeed a solution of (EQP)?

¢ Recall the sufficient second-order optimality condition:
— If KKT conditions and

d’Qd > 0forall d e No(x*)\ {0}

hold, then x* is a strict local minimizer of (EQP).

e On the other hand:

— If Q has negative eigenvalue in No(x*), then (EQP) is unbounded
below.
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Direct Solution of the KKT System

24]6)--0

e Can we verify that x* is minimizer without computing Ng(x*)?

Definition (Inertia of Matrix)

Let n., n_, ng be the number of positive, negative, and zero
eigenvalues of a symmetric matrix K. Then In(K) = (n.,n_, ng) is
called the inertia of K.

Theorem
Suppose that A has full rank. If In(K) = (n, ng,0), then x* is the
unique global minimizer of (EQP).
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Computing the Inertia

240

e Symmetric indefinite factorization K = LBL"

— L: unit lower triangular matrix

— B: block diagonal matrix with 1 x 1 and 2 x 2 diagonal blocks
e Can be computed efficiently, exploits sparsity.
¢ Factorization used to solve the linear system.

¢ Obtain inertia from counting eigenvalues of the blocks in B.
— This is easy!
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Ways to Solve Equality-Constrained QPs

¢ Direct method:
— Factorize KKT matrix.
— If LT BL factorization is used, we can determine if x* is indeed a
minimizer.
— Easy general-purpose option.

e Schur-complement method:
— Requires that Q is positive definite and easy to factorize (e.g.,
diagonal).
— Number of constraints ng should not be large.
— Often used in interior-point LP solvers.

¢ Null-space method:
— Step decomposition into range-space step and null-space step.
— Permits exploitation of constraint matrix structure.
— Number of degrees of freedom (n — ng) should not be large.
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Inequality-Constrained QPs

Qx+9g+ Y, a\=0
. 1.T T ieEUL
min 5X' Qx +g' x ,
xeRn 2 J alx+b=0friecé
T .
S.t.a,-x+b,-:0for/€€ a,-Tx+b,-§0forieI

alx+b<0foriel X\ >0foriez

e Assume here: (a,-Tx + b,'))\,‘ =0forieZl
— Qs positive definite.
— {aj}ice are linearly independent.

¢ Difficulty: Decide, which inequality constraints are active at x*.

¢ |f that was known, could just solve equality-constrained QPs.

Los Alamos National Laboratory UNCLASSIFIED
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Working Set

Choose working set W C 7 (guess of optimal active set) and solve

EQP
( )T QX—i—g-FZ aix=0
min %XTQX +9 X icEUW

XcRM
T o .
st.a/x+b=0foricg 4 x+b=0foricé
alx+b=0foriew

alx+bj=0foriew

Solution of KKT system for (EQP) gives
xEP e R and \FOP foric uw

Complete to candidate optimal KKT solution we set
AEQP —0forie T\ W
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Optimality Test

min 1x7Qx + g7x Qx+g+> ar=0
xeR" ieEuw
st.a/x+b=0foricé alx+b=0foricé&

alx+b=0foriew alx +bj=0foriecw

Check if (xEOP \EQP) is optimal KKT point for (QP):

?
al xE® L b <0forie T\ W

)\,-EQPéOforieI
e Complementarity holds by construction (A\; = 0 fori € Z\ W).
e If satisfied, (xF97, \EQP) is the (unique) optimal solution.
e Otherwise, let’s try a different working set.

Los Alamos National Laboratory UNCLASSIFIED
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Demonstration on Example QP

T N @
\\\\ (1)/ /,’ \\\\
7] //({)/
G ‘ el
min (x; — 1) + (X — 2.5)?
St — X +2%—2<0(1)  —x <0 (4)
X1+2x2—-6<0(2) —x2<0(5)

X1—2X2—2§0(3)

Los Alamos National Laboratory
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Primal Active-Set QP Solver lteration 1

IS @)
(1) P e \
e \>
4) ///i 3)
5)
Initialization:

Choose feasible starting iterate x
x=(0,2)
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Primal Active-Set QP Solver lteration 1

™~
_ RANge)
( ] ) P 2 \\\\
>
“ )
5) ,,//

B Initialization:
W=13,5} Choose feasible starting iterate x
Choose working set W C 7 with

e ieW=alx+b=0
® {a;}iceuw are linear independent
(Algorithm will maintain these properties)

x=(0,2)
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Primal Active-Set QP Solver lteration 1

(1) \(2>
(4) ///6/)//
DN ‘
W = {3,5}
x=(0,2)
KEQP _ (0,2) Solve (EQP)
A3 = —2
A5 = —1
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Primal Active-Set QP Solver lteration 1

TN
) \

<
P
/’////
)

-

(5) e

W ={3,5} Status: Current iterate is optimal for (EQP).

x=(0,2)
XEOP — (0,2)

Mg = -2

)\5 = —1
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Primal Active-Set QP Solver lteration 1

TN
) \

<
P
/’////
)

-

(5) e

W ={3,5} Status: Current iterate is optimal for (EQP).

x =(0,2) Release Constraint: .
XEP _ (0.2) ¢ Pick constraint / with \; < 0 (here / = 3).

Az = -2

A5 = —1
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Primal Active-Set QP Solver lteration 1

P PNy
M) Nl

>
“ )

-

8)

W ={3,5} Status: Current iterate is optimal for (EQP).

x =(0,2) Release Constraint:
XEQP _ (0. 2) * Pick constraint / with \; < 0 (here i = 3).
) * Remove i from working set:
A3 = -2 W+ W\ {3} = {5}

Los Alamos National Laboratory
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Primal Active-Set QP Solver lteration 1

B N @
M) Nl
/ >
“ )
®)

W ={3,5} Status: Current iterate is optimal for (EQP).

=(0,2) Releaﬁe Constraint: h . )
Q ¢ Pick constraint / with \; < 0 (here i = 3).
XEP = (0,2) * Remove / from Workiné set:
Ag = —2 W« WA\ {3} = {5}
As = —1 * Keep iterate x = (0, 2).

Los Alamos National Laboratory
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Primal Active-Set QP Solver lteration 2

(1) \(2>
(4) ///6/)//
© ‘
W = {5}
X=2.0  sone EQP)
XEQP — (1 , 0)
As = -5

Los Alamos National Laboratory UNCLASSIFIED Andreas Wachter | 29



UNCLASSIFIED

Primal Active-Set QP Solver lteration 2

(1) \(2>
(4) ///6/)/
® ‘ 7
W = {5} Status: Current iterate is not optimal for (EQP).
x=(2,0)
xE® = (1,0)
A5 = -5
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Primal Active-Set QP Solver lteration 2

o) NG
@ //{}3/
5) ) ‘ e
W = {5} Status: Current iterate is not optimal for (EQP).
x =(2,0) Take step (xE9 is feasible for original QP):
xEOP = (1,0) e Update iterate x < xFQP

As = -5
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Primal Active-Set QP Solver lteration 2

o — N
@l T m
(5) pd
W = {5} Status: Current iterate is not optimal for (EQP).
x =(2,0) Take step (xE9 is feasible for original QP):
xEQP — (1,0) e Update iterate x < xFQP

s = -5 * Keep W
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Primal Active-Set QP Solver lteration 3

(1) \(2>
(4) ///6/)//
© ‘
W = {5}
=010 sone EQP)
XEQP — (1 , 0)
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Primal Active-Set QP Solver lteration 3

AL
(1) 2

<
P
/’////
)

-

(5) e

Status: Current iterate is optimal for (EQP)
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Primal Active-Set QP Solver lteration 3

TN
) \

<
P
/’////
)

-
-

(5) 7

Status: Current iterate is optimal for (EQP)

Release Constraint:
x=(1,0) * Pick constraint 7 with \; < 0 (here i = 5).
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Primal Active-Set QP Solver lteration 3

P PNy
M) Nl

>
“ )

-

8)

Status: Current iterate is optimal for (EQP)

W = {5} .
Release Constraint:
x=(1,0) * Pick constraint 7 with \; < 0 (here i = 5).
xEQP — (1,0) ¢ Remove / from working set:
\ 5 W W\ {5} =0
5= —

Los Alamos National Laboratory
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Primal Active-Set QP Solver lteration 3

.
B RANge)
M) Nl
/ >
“ P
®)

Status: Current iterate is optimal for (EQP)

W = {5} .
Release Constraint:
x=(1,0) ® Pick constraint 7 with \; < 0 (here i = 5).
xEQP — (1,0) * Remove / from working set:
i W<+ W\ {5} =0
As = =5 ® Keep iterate x = (1,0).

Los Alamos National Laboratory
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Primal Active-Set QP Solver lteration 4
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) \(2)
@ B
(5) ¢ ‘ /’//
W=10
x=(1,0) Solve (EQP)
xEO = (1,2.5)

Los Alamos National Laboratory
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Primal Active-Set QP Solver lteration 4
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EQP

—_~ —~ =

(H

(5)

//
-

AN

.
P

-

-

B3

-

Status: Current iterate not optimal for (EQP)

Los Alamos National Laboratory
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Primal Active-Set QP Solver lteration 4

UNCLASSIFIED

(H

(5) e

AN

.
P

-

-

B3

-

x =
Il
—_ e~

EQP

>~
Il

Status: Current iterate not optimal for (EQP)

Take step (xE9® not feasible for original QP):

Los Alamos National Laboratory
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Primal Active-Set QP Solver lteration 4

(H

(5)

)

//

S
-

-

-

)

-

Status: Current iterate not optimal for (EQP)

Take step (xE9® not feasible for original QP):

e Largest a € [0,1]: x + a(xEOP — x) feasible

Los Alamos National Laboratory
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Primal Active-Set QP Solver lteration 4

F
| ~
. RANge)
1 X Nl
>
@) ! )
S el

Status: Current iterate not optimal for (EQP)
Take step (xE9® not feasible for original QP):
) e Largest a € [0,1]: x + a(xEOP — x) feasible
 Update iterate x < x + a(xEP — x)

x =
Il
~—~ —~~ S

EQP

>~
Il
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Primal Active-Set QP Solver lteration 4

F ;
! ~_ !
@
1 X N
>
“ i )
) e

Status: Current iterate not optimal for (EQP)

Take step (xE9® not feasible for original QP):

x =
Il
~—~ —~~ S

) e Largest a € [0,1]: x + a(xEOP — x) feasible
 Update iterate x < x + a(xEP — x)
e Update W« WU {i} = {1}

— where constraint i = 1 is “blocking”
Los Alamos National Laboratory UNCLASSIFIED

EQP

>~
Il

Andreas Wachter | 31



UNCLASSIFIED

Primal Active-Set QP Solver lteration 5

/'/ \\ ,'/”
a ) \(2)
(4) ///g)//
DN ‘
w={1}
=019 sove (EQP)
xE® = (1.4,1.7)
A\ =0.8
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Primal Active-Set QP Solver lteration 5

/'/ \\ ,'/”
1 ) \(2)
(4) ///6/)/
® ‘ e
W= {1} Status: Current iterate is not optimal for (EQP).
x=(1,1.5)
xE® = (1.4,1.7)
A =08
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Primal Active-Set QP Solver lteration 5

1y~ . ’\\9)
4) //6/;
5) 7
W= {1} Status: Current iterate is not optimal for (EQP).

x=(1,15)  Take step (xE9P feasible for original QP):
xEQP — (1.4,1.7) * Update iterate x « xEQP,
A =08 e Keep W.
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Primal Active-Set QP Solver lteration 6

ok
(1) \(2)
(4) ///6/)//
DN ‘
w={1}
=417 sove (EQP)
xE® = (1.4,1.7)
A1 =08
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Primal Active-Set QP Solver lteration 6

e
(1) \(2)
(4) ///6/)//
DN ‘
W= {1} Status: Current iterate is optimal for (EQP)
x=(1.4,1.7)
xE® = (1.4,1.7)
A =08
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Primal Active-Set QP Solver lteration 6

e
(1) \(2)
(4) ///6/)//
DN ‘
W= {1} Status: Current iterate is optimal for (EQP)
x=(1.4,1.7) "> 0for al
e )\;>0forallieWw.
xE® = (1.4,1.7) '
A =08
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Primal Active-Set QP Solver lteration 6

X S
m SN
4) ///g)//
DN ‘ e ]
W= {1} Status: Current iterate is optimal for (EQP)
x=(1.4,1.7) = 0for all
e \;>O0forallieWw.
xE® = (1.4,1.7) =T
Declare Optimality!
A =08
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Primal Active-Set QP Method

1: Select feasible x and W C Z N A(x).
2: Solve (EQP) to get xEQP and \FQP,
3: if x = xEQP then

4:  If \FEQP > 0: STOP: Done!

5. Otherwise, select \F9” < 0 and set W « W\ {i}.

6: else

7:  Compute step p = xFQP — x.

8:  Compute o = argmax{a € [0,1] : x + ap is feasible}.
9: if « < 1 then

10: Pick i € Z\ W with a’p > 0 and a/ (x + ap) + b; = 0.
11: Set W «— Wu{i}.

12: end if

13: Update x < x + ap.

14: end if

15: Go to step 2.
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Primal Active-Set QP Algorithms

e Keeps all iterates feasible.
e Changes W by at most one constraint per iteration.
® {aj}iceyy remain linearly independent.
¢ Finite convergence:
— Finitely many options for W.

— Objective decreases with every step; as long as a > 0!
— Special handling of degeneracy (« = 0 steps) required

e Efficient solution of (EQP)
— Update the factorization of KKT matrix when WV changes.

e There are variants that allow Q to be indefinite.

® There are other types of active-set methods for QPs.
— Dual, homotopy, simplex-like, ...
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