Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wenting Li

Postdoc
T-5/CNLS

Physics-informed learning for Power Grids

Wenting Li

Office: TA-03, Building 0410, Room 163
Mail Stop: B258
Phone: (518) 268-0401
Fax: (505) 665-7652

wenting@lanl.gov
home page

Research highlight
  • My general research area is the fusion of machine/deep learning with dynamic physical networks. Particularly, I am interested in distilling information from high-dimensional structured data, sparse networks and fomulating real-time efficient algorithms. Specific applications include event identification, faults location, detection, and non-intrusive load disaggregation in power grids.
 Educational Background/Employment:
  • Ph.D., Electrical Engineering, Rensselaer Polytechnic Institute (RPI), Troy, NY, 2019
  • M.S., Applied Mathematics, Rensselaer Polytechnic Institute (RPI), Troy, NY, 2019
  • B.S., Electrical Engineering, Harbin Institute of Technology (HIT), Harbin, China, 2013
  • Employment:
    • 2019-Present: Postdoc Research Associate, Los Alamos National Laboratory, NM
    • 2015-2019: Research Assistant, Rensselaer Polytechnic Institute (RPI), Troy, NY

Research Interests:

  • Physics-informed machine/deep learning for the large-scale dynamic networks
  • Real-time algorithm with low-rank sparse data
  • Graph-based learning and neural networks

Selected Recent Publications:

  1. Li, W., Yi, M., Wang, M., et al, Real-time Energy Disaggregation at Substations with Behind-the-Meter Solar Generation. accepted by IEEE Transactions on Power Systems, (2020).
  2. Li, W., Deka, D., Chertkov, M. and Wang, M., Real-time faulted line localization and pmu placement in power systems through convolutional neural networks. IEEE Transactions on Power Systems, 34.6 4640-4651(2019).
  3. Li, W., Wang, M., Identifying overlapping successive events using a shallow convolutional neural network. IEEE Transactions on Power Systems, 34.6 4762-4772 (2019).
  4. Li, W., Wang, M. and Chow, J.H., Real-time event identification through low-dimensional subspace characterization of high-dimensional synchrophasor data. IEEE Transactions on Power Systems, 33.5 4937-4947 (2018).
LANL Operated by the Triad National Security, LLC for the National Nuclear Security Administration of the US Department of Energy.
Copyright © 2003 LANS, LLC | Disclaimer/Privacy