Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Zachary R Fox

CNLS Postdoctoral Research Associate
CCS-3/CNLS

Systems Biology and Biophysics

Zachary R Fox

Office: TA-3, Bldg 1690
Mail Stop: B258
home page

Research highlight
 Educational Background/Employment:
  • BBE (2014) Bioengineering, University of Delaware
  • Ph.D. (2019) Bioengineering, Colorado State University
  • Professional Training:
    • 2019-2020 Postdoctoral Researcher in Applied Mathematics and Cybergenetics at Institut Pasteur in Paris, France.

Research Interests:

  • Learning models and parameters from modern single-cell microscopy data.
  • Quantitative analysis of single-cell microscopy data.
  • Mathematical analysis of random walks.

Selected Recent Publications:

  1. Jashnsaz, Fox, Hughes, Li, Munsky, Neuert. Diverse cell stimulation kinetics identify predictive signal transduction models, iScience. 23, 10 (2020).
  2. Fox, Neuert, Munsky. Optimal Design of Single-Cell Experiments within Temporally Fluctuating Environments., Complexity. 2020, Article ID 8536365 (2020).
  3. Aguilera, Raymond, Fox, May, Djokic, Morisaki, Stasevich, Munsky. Computational design and interpretation of single-RNA translation experiments., PloS Computational Biology. 15(10), (2019).
  4. Fox and Munsky. The finite state projection based Fisher information matrix approach to estimate and maximize the information in single-cell experiments., PloS Computational Biology. 15(1), (2019).
  5. Vo, Fox, Baetica, Munsky. Bayesian estimation for stochastic gene expression using multifidelity models., Journal of Physical Chemistry B. 123(10), 2217-2234 (2019).
  6. Munsky, Li, Fox, Shepherd, Neuert. Distribution shapes govern the discovery of predictive models for gene regulation., Proceedings of the National Academy of Sciences. 123(10), 2217-2234(2018).
LANL Operated by the Triad National Security, LLC for the National Nuclear Security Administration of the US Department of Energy.
Copyright © 2003 LANS, LLC | Disclaimer/Privacy