Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, April 17, 2006
11:00 AM - 12:30 PM
CNLS Conference Room

Seminar

Splitting property in finite and infinite

P. L. Erdos and L. Soukup
Alfréd Rényi Institute of Mathematics

A maximal antichain A of poset P splits if and only if there is a set B ⊂ A such that for each p ∈ P either b ≤ p for some b ∈ B or p ≤ c for some c ∈ A \ B. The poset P is cut-free if and only if there are no x < y < z in P such that [xz] P = [xy]P ∪ [yz]P. By Ahlswede, Erdos and Graham (1995) every maximal antichain in a finite cut-free poset splits. Although this statement for infinite posets fails (see Ahlswede, Khachatrian (2000)) it is true that if a maximal antichain in a cut-free poset “resembles” to a finite set then it splits. We also investigate possible strengthening of the statements that “A does not split” and we could find a maximal strengthening. We will discuss some applications as well. It is interesting to remark that this property is not a stand-alone phenomenon: a version of it is just equivalent to Axiom of Choice.