Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Friday, August 10, 2007
4:30 PM - 5:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Parametric Clustering of Data

Cody Mack
University of Notre Dame

Clustering is a common tool in various sciences to analyze data in order to find similarities and discrepancies within data. Given numerical data, the goal of clustering is to identify regions, called clusters, of the data points such that points within the same cluster are closer to each other than to those within different clusters. The clustering of the data points by their proximity corresponds to similarity of the data represented. We present a clustering algorithm, derived using ideas from Bayesian inference and statistical physics, to identify such regions. We compare our algorithm to other common clustering algorithms.

Host: Matt Hastings