Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, November 19, 2007
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Weakly Nonlinear-Dissipative Approximations of Hyperbolic-Parabolic Systems with Entropy

C. David Levermore
University of Maryland, CNLS External Advisory Committee Member

Hyperbolic-parabolic systems have spatially homogeneous stationary solutions. When the dissipation is weak, one can derive weakly onlinear-dissipative approximations that govern perturbations of these stationary solutions. These approximations are quadratically nonlinear. Up to a linear transformation, they are independent of the dependent variables used to express the original system. When the original system has an entropy, the approximation is formally dissipative in a natural Hilbert space. We show that under a mild structural hypothesis, this approximation has global weak solutions for all initial data in that Hilbert space. This theory applies to the compressible Navier-Stokes system. The resulting approximate system is an incompressible Navier-Stokes system coupled toequations that govern the acoustic modes. The solution of this approximate system is unique if the incompressible modes are uniquely determined.