Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, March 19, 2008
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Theory and Algorithms for the Quasicontinuum Method

Mitchell Luskin
School of Mathematics, University of Minnesota

The quasicontinuum approximation is a method to reduce the atomistic degrees of freedom of a crystalline solid by piecewise linear interpolation from representative atoms. The coarsened triangles can be further approximated by a strain energy density based on the Cauchy-Born rule to obtain the finite element approximation in the continuum region. The forces on all of the representative atoms are determined except for those representative atoms in an atomistic-continuum interfacial region, where it is not known how to model the forces to simultaneously satisfy conditions of accuracy, efficiency, and conservation. We will present a theoretical framework for evaluating the goal- oriented accuracy of the atomistic-continuum interface, and we will apply this theory to analyze several quasicontinuum approximations. We will also present an a posteriori goal-oriented error estimator and a corresponding adaptive atomistic-continuum modeling and mesh refinement algorithm to enable a quantity of interest to be efficiently computed to a predetermined accuracy. Joint with Marcel Arndt and Matthew Dobson.

Host: Pieter Swart, T-07