Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, July 10, 2008
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Postdoc Seminar

Identification of functional information subgraphs in complex networks

Vadas Gintautas
University of Illinois at Urbana Champaign, T-10 and CNLS

We present a general information theoretic approach for identifying functional subgraphs in complex networks where the dynamics of each node are observable. We show that the uncertainty in the state of each node can be expressed as a sum of information quantities involving a growing number of correlated variables at other nodes. We demonstrate that each term in this sum is generated by successively conditioning mutual informations on new measured variables, in a way analogous to a discrete differential calculus. The analogy to a Taylor series suggests efficient search algorithms for determining the state of a target variable in terms of functional groups of other degrees of freedom. We apply this methodology to electrophysiological recordings of networks of cortical neurons grown it in vitro. Despite strong stochasticity, we show that each cell's patterns of firing are generally explained by the activity of a small number of other neurons. We identify these neuronal subgraphs in terms of their mutually redundant or synergetic character and reconstruct neuronal circuits that account for the state of each target cell.