Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, September 18, 2008
3:30 PM - 4:30 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Gaussian Belief Propagation for Solving Systems of Linear Equations: Theory and Application

Danny Bickson
IBM, Haifa

The canonical linear-algebraic problem of solving a system of linear equations arises in numerous contexts in the mathematical sciences and engineering. In this talk, we introduce an efficient Gaussian belief propagation (GaBP) solver that does not involve direct matrix inversion. The iterative nature of our approach allows for a distributed message-passing implementation of the solution algorithm. We discuss the properties of the GaBP solver, including convergence,exactness, computational complexity, message-passing efficiency and its relation to classical solution methods. The attractiveness of the proposed solver, in comparison to conventional iterative solution methods, is demonstrated using linear detection applications.

The talk is based on a joint work with Prof. Jack K. Wolf (UCSD), Prof. Paul H. Siegel (UCSD), Dr. Ori Shental (UCSD) and Prof. Danny Dolev (HUJI).

Host: Misha Chertkov, T-13