Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, August 03, 2009
4:15 PM - 4:40 PM
CNLS Conference Room (TA-3, Bldg 1690)

Student Seminar

How Mathematical Models Can Help Control the Spread of Animal Diseases

Carrie Manore
T-5 and Oregon State University

Animal diseases, such as foot-and-mouth disease and avian flu, are increasingly important in world economics, national security, and biodiversity. Rinderpest is an important animal disease related to human measles. It is a highly virulent and often lethal virus affecting cloven-hoofed animals such as cattle, sheep, and pigs. Rinderpest pandemics have caused wide-spread herd loss in Europe and Africa. If the disease enters the United States, it could be devastating to animal agriculture and the economy. To help prepare for this possibility, we create a spatially explicit stochastic model for multi-host animal diseases to better understand their spread in the United States. We explore the effectiveness of mitigation strategies such as quarantine, vaccination, and culling in a case study on rinderpest. Spread of rinderpest is modeled using county-level data and animal transportation rates to capture the within-county and between-county behavior. We compare different mitigation strategies and analyze the sensitivity of final epidemic size to these strategies in order to minimize loss due to an outbreak of rinderpest. We find that severe epidemics occur if the disease spreads to high animal density areas in the Midwest. Effective spatial control strategies include faster response time, better movement restriction, and widespread surveillance in certain key groups of counties. Reducing the time between detection and culling or quarantine also lowers the size of an epidemic. Vaccination, however, is not as effective for controlling a newly introduced, virulent disease such as rinderpest. Generalizations of control strategies for rinderpest are effective for other contagious animal diseases, such as foot and mouth disease.