Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, August 05, 2009
4:00 PM - 5:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Approximate shortest path and distance queries in power-law graphs

Christian Sommer
CCS-3 and Tokyo University

Distance oracles have been investigated both for general graphs as well as for various graph classes. Many practical networks seem to obey a power law, and, fortunately, general schemes perform quite well for power-law graphs too. We adapt the approximate distance oracle by Thorup and Zwick (J. ACM 2005) to optimize it for unweighted, undirected power law graphs.

We provide a rigorous probabilistic analysis of the average-case performance of our deterministic algorithm based on the theory of random power law graphs with a fixed expected degree sequence by Aiello, Chung, and Lu.

Let $\gamma>\frac{\tau-2}{2\tau-3}$, where $\tau\in(2,3)$ is the power law exponent. We prove that for stretch 3, instead of an oracle of size~$O(n^{3/2})$, expected space~$O(n^{1+\gamma})$ is sufficient and that the oracle can be constructed in expected time~$O(n^{1+\gamma}\log n)$. Our distance oracle is the first one optimized for power-law graphs with a theoretical analysis. The results can be extended to obtain a compact routing scheme. Joint work with Wei Chen, Shanghua Teng, and Yajun Wang