Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, August 23, 2006
10:00 AM - 11:00 AM
CNLS Conference Room

Seminar

A Cell-Centered Diffusion Scheme on Two-Dimensional Unstructured Meshes

Pierre-Henri Maire
UMR CELIA CEA--CNRS--Universite Bordeaux

We present a new cell-centered diffusion scheme on unstructured mesh. The main feature of this scheme lies in the introduction of two half normal fluxes and two temperatures on each edge. A local variational formulation written for each corner cell provides the discretization of the half normal fluxes. This discretization yields a linear relation between the half normal fluxes and the temperatures defined on the two edges impinging on a node. The continuity of the half normal fluxes written for each edge around a node leads to a linear system. Its resolution enables to eliminate locally the edge temperatures in function of the mean temperature in each cell. By this way, we obtain a small symmetric positive definite matrix located at each node. Finally, by summing all the nodal contribution, one gets a linear system satisfied by the cell-centered unknowns. This system is characterized by a symmetric positive definite matrix. We show numerical results on various test cases which exhibit the good behavior of this new scheme. First, it preserves the linear solutions on triangular mesh. It reduces to a classical five points scheme on rectangular grids. For non-orthogonal quadrangular grids we obtain an accuracy which is almost second order on smooth meshes.

Host: Mikhail Shashkov