Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, July 15, 2010
12:00 PM - 1:00 PM
Bradbury Science Museum

Seminar

Coalescent Based Inference Tools for Population Genetic Data at Neutral Non-recombining Locus

Ori Sargsyan
Department of Organismic and Evolutionary Biology, Harvard University

Coalescent processes represent probabilistic frameworks for quantifying and identifying the impact of evolutionary forces using genetic variation in samples of DNA sequences. In my talk I will present two coalescent based inference methods for population genetic data at a neutral non-recombining locus. The first method is a joint work with Prof. John Wakeley. In this project we describe a forward-time haploid reproduction model with a constant population size that includes life history characteristics common to many marine organisms. We develop coalescent approximations for sample gene genealogies under this model and use these to predict patterns of genetic variation. Depending on the behavior of the underlying parameters of the model, the approximations are coalescent processes with simultaneous multiple mergers or Kingman’s coalescent. Using simulations, we apply our model to data from the Pacific oyster and show that our model predicts the observed data very well. We also show that a fact which holds for Kingman’s coalescent and also for general coalescent trees–that the most-frequent allele at a biallelic locus is likely to be the ancestral allele–is not true for our model. Our work suggests that the power to detect a “sweepstakes effect” in a sample of DNA sequences from marine organisms depends on the sample size. In the second project I developed computationally tractable inference method for full polymorphisms in samples of DNA sequences at a neutral non-recombining locus when the underlying probabilistic framework is based on the the general coalescent tree framework with infinite-site model. The general coalescent tree framework is a family of models for determining ancestries among random samples of DNA sequences at a non-recombining locus. The ancestral models included in this framework can be derived under various evolutionary scenarios. First, an exact sampling scheme is developed to determine the topologies of conditional ancestral trees. However, this scheme has some computational limitations and to overcome these limitations a second scheme based on importance sampling is provided. Next, these schemes are combined with Monte Carlo integrations to estimate the likelihood of full polymorphism data, the ages of mutations in the sample, and the time of the most recent common ancestor. I applied this method for estimating the likelihood of neutral polymorphisms in a sample of DNA sequences completely linked to a mutant allele, which is either neutral or under selection.

Host: Thomas Leitner