Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, August 18, 2010
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Shock Induced Jamming and Fracture at Particulate Interfaces

Mahesh Bandi
Harvard University

A monolayer of hydrophobic particles at the air-water interface exhibits properties of a two-dimensional solid under compression. Localized surfactant introduction on such monolayers causes dynamical fracture due to stresses exerted by the advancing surfactant. Here we experimentally demonstrate a radially divergent particulate shock emerges from the point of surfactant introduction. Using similarity solutions that predict $t^{3/4}$ scaling for an advancing surfactant on the surface of a deep fluid, we experimentally show the particulate shock travels with the Thoreau-Reynolds ridge. The shock induces particulate compaction in its wake which increases until the particles jam into a disordered,two-dimensional solid. Fracture occurs when the compaction band\'s packing fraction saturates at random close packed density $\\phi_{RCP}$ and gives rise to nearly regular, triangle shaped cracks with robust geometrical features. The number of cracks $N$ varies monotonically with the initial particulate packing fraction $\\phi_{init}$. Whereas the compaction band\'s radius $R^*$ at fracture onset also exhibits similar monotonic dependence on $\\phi_{init}$, its width $W^*$ shows no such dependence. By treating the compaction band as a rigid, elastic annulus, and invoking mass conservation, we show $N \\sim R^*/W^* = 2\\phi_{RCP}/\\phi_{init}$ and verify it experimentally over a range of initial packing fractions ($0.1 \\le \\phi_{init} \\le 0.64$

Host: Robert Ecke