Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, January 24, 2011
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Conforming Vector Interpolation Functions for Polyhedral Meshes

Andrew Gillette
University of Texas at Austin

Convex polyhedra offer a flexible domain meshing alternative to tetrahedra or hexahedra and can be generated automatically by Voronoi-based methods. For scientific computation, polyhedra meshes are infrequently used due in part to the lack of basis functions suited to their irregular shapes. In this talk, I will first review some methods for constructing generalized barycentric scalar-valued functions over polyhedra which can be used to interpolate scalar data over the domain. I will then discuss how these functions can be leveraged to create vector-valued basis functions akin to the edge elements used in electromagnetics. The vector functions can be used to create H(Curl)-conforming vector fields which interpolate degrees of freedom associated to edges of the polyhedral mesh.

Host: Mikhail Shashkov. shashkov@lanl.gov, 667-4400