Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, February 03, 2011
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Solid oxide fuel cell seal material design using statistical continuum mechanics.

Jackie Milhans
LANL, XCP-5: MATERIALS AND PHYSICAL DATA

Solid oxide fuel cells (SOFC) in a flat-plate configuration require a hermetic seal between the fuel and air sides of the electrodes, and this seal must withstand a variety of thermally-induced stresses over the lifetime of the cell. In this study, quantitative microstructure-property relationships are developed to predict optimum seal structures for mechanical properties and thermal expansion coefficient criteria. These relationships are used to create an inverse approach to characterizing the processing method from the desired microstructure, i.e., microstructure sensitive design. The main focus of the work concentrates on the macroscopic property predictions from the constituent properties using homogenization techniques. The properties of interest are: elastic modulus, coefficient of thermal expansion, and viscoelastic properties. Homogenization methods are used to predict the “homogenized” or “averaged” mechanical response of a heterogeneous material observed in specimen testing based on the individual properties and volume fractions of the various components composing the material. Such a model could predict the optimum microstructure (with the desired elastic modulus, coefficient of thermal expansion, and viscoelastic behaviors) based on a desired level of crystallization and various crystal volume fractions in glass-ceramic materials required.

Host: Jim Hammerberg XCP-5 (505) 667-0687