Lab Home | Phone | Search | ||||||||
|
||||||||
Random intersection graphs (RIGs) are an important random structure with algorithmic applications in social networks, epidemic networks, blog readership, and wireless sensor networks. RIGs can be interpreted as a model for large randomly formed non-metric data sets. We analyze the component evolution in general RIGs, giving conditions on the existence and uniqueness of the giant component. Our techniques generalize existing methods for analysis of component evolution: we analyze survival and extinction properties of a dependent, inhomogeneous Galton-Watson branching process on general RIGs. Our analysis relies on bounding the branching processes and inherits the fundamental concepts of the study of component evolution in Erdos-Renyi graphs. The major challenge comes from the underlying structure of RIGs, which involves both a set of nodes and a set of attributes, with different probabilities associated with each attribute. Host: Peter Loxley, loxley@lanl.gov |