Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, April 12, 2011
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Machine Learning, Monte Carlo, and Blackbox Optimization

David Wolpert
NASA Ames Institute and CNLS

In this talk I explore the relationship between Machine-Learning (ML), Monte Carlo Optimization of a parametrized integral (MCO), and `blackbox' optimization (BO - the kind of optimization one typically addresses with GA's or simulated annealing). First, I show how to transform any BO problem into an MCO problem. Second, I show that MCO is formally identical to ML. These two results provide a way to apply many powerful ML techniques to BO. In particular, I show how to exploit cross-validation and bagging for BO. I end by showing how using any (?) type of Monte Carlo to estimate an integral can be improved by using the ML technique of stacking.

Host: CNLS