Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, March 22, 2012
3:00 PM - 4:00 PM
T-DO Conference Room Bldg 123

Seminar

*** NOTE CHANGE IN PLACE AND TIME *** Streaming Models and Algorithms for Communication and Information Networks

Brian Thompson
Rutgers University

The last decade has seen a drastic change in the ways and rate at which people interact, and the technology available to observe and record these interactions. We have the ability to collect massive amounts of data: logs of emails, IP traffic, phone calls, SMS messaging, blog posts, and social media. The pervasiveness of communication and information networks in today's world necessitate the development of better models and techniques to address the challenges in efficiency and scalability that arise, and to leverage the temporal and relational information inherent in the data. In this work we present a data mining approach for analyzing streaming data from communication and information networks. We first build a stochastic model for a system of temporal processes, which we call the REWARDS (REneWal theory Approach for Real-time Data Streams) Model, and propose statistical methods to identify dependencies in the system. Applying this model to the network context, we develop efficient algorithms to identify anomalous activity, study information diffusion, and measure influence between entities. We demonstrate the usefulness of our approach with experiments on a variety of real-world data.

Host: Aric Hagberg, CNLS