Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, May 09, 2012
1:00 PM - 2:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

CNLS KAC Lecture: Random Organization: Irreversibility & Collisions, a Dynamic Phase Transition

Paul Chaikin
New York University

Understanding self-organization is one of the key tasks for controlling and manipulating the structure of materials at the micro- and nanoscale. In general, self-organization is driven by interparticle potentials and is opposed by the chaotic dynamics characteristic of many driven non-equilibrium systems. Here we introduce a new model that shows how the irreversible collisions that generally produce diffusive chaotic dynamics can also cause a system to self-organize to avoid future collisions. This can lead to a self-organized non-fluctuating quiescent state, with a dynamical phase transition separating it from fluctuating diffusing states. We apply the model to recent experiments on periodically sheared particle suspensions where a transition from reversible to irreversible behavior was observed. New experiments presented here exhibit remarkable agreement with this simple model. More generally, the model and experiments provide new insights into how driven systems can self-organize

Host: Robert Ecke, CNLS, 667-1444, ecke@lanl.gov