Lab Home | Phone | Search | ||||||||
|
||||||||
The theme of this talk is the interplay between entanglement and renormalization in quantum matter. The goal is to formulate a general conceptual and computational framework for understanding entanglement in quantum matter. I will begin by describing recent progress in computing entanglement properties of interesting ground states by focusing on the low energy physics. My examples will include Fermi liquids, topological states, disordered insulators, and quantum critical points. Then I will discuss how the results of such studies lead us naturally to consider certain classes of tensor network states that incorporate the interplay between entanglement and renormalization. Finally, I will talk about the connections between such tensor network states and holographic duality. Host: Armin Rahmanissian |