Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, July 01, 2014
10:30 AM - 11:30 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Universal Convexification via Risk Aversion

Krishnamurthy Dvijotham
University of Washington

We develop a framework for convexifying a general class of optimization problems. We analyze the suboptimality of the solution to the convexified problem relative to the original nonconvex problem, and prove additive approximation guarantees under some assumptions. In simple supervised learning settings, the convexification procedure can be applied directly and standard optimization methods can be used. In the general case we rely on stochastic gradient algorithms, whose convergence rate can be bounded using the convexity of the underlying optimization problem. We then extend the framework to a general class of discrete-time dynamical systems -- where our convexification approach falls under the paradigm of risk-sensitive Markov Decision Processes. We derive the first model-based and model-free policy gradient optimization algorithms with guaranteed convergence to the optimal solution. We also present numerical results in different machine learning applications.

Host: Misha Chertkov