Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, July 21, 2014
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Dynamics of Peakons, Jetlets and Strands

Darryl Holm
Imperial College London

The way we view hydrodynamics changed forever when Arnold made his revolutionary discovery [1] that the Euler equations for an ideal fluid represent geodesic motion on SDi_ (volume preserving diffeomorphisms) with respect to the L2 norm on the tangent space TSDi_' Xdiv _ SDi_, where Xdiv denotes the divergence-free vector fields. Arnold's famous paper has led to many further developments in continuum dynamics. These developments range, for example, from shallow-water solitons to shape analysis for computational anatomy. The developments of Arnold's discovery that we will discuss in this talk are based on a dual pair of momentum maps that emerge from the Euler-Poincare theory of Lagrangian reduction by symmetry when the symmetry is the Lie group of diffeomorphisms acting on a smooth manifold M, or on a space of smooth embeddings in M [2].

The examples we shall discuss as variations on the theme of dual momentum maps are: 1. Shallow-water solitons called peakons. 2. Jetlets: a new type of coherent particle-like fluid excitation that carries momentum and angular momentum, while preserving its circulation [3]. If time remains, we may also say a few words about the geometry of completely integrable continuum spin chains (strands) and stochastic extensions of these examples.

References [1] Arnold, V. I., \Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits," Annales de l'institut Fourier, 6, No. 1, 319{361 (1966). [2] Holm, D. D., Marsden, J.E., \Momentum Maps and Measure-valued Solutions," in: The Breadth of Symplectic and Poisson Geometry, J.E. Marsden and T.S. Ratiu, Editors, Birkhauser Boston, Boston, MA, 2004, Progr. Math., 232, pp. 203{235. [3] C.J. Cotter, D.D. Holm, H.O. Jacobs and D. M. Meier, A jetlet hierarchy for ideal fluid dynamics. J Phys A To appear. Preprint at arXiv:1402.0086.

Host: Robert Ecke