Lab Home | Phone | Search | ||||||||
|
||||||||
HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells compete against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that latent virus lineages survive in patient plasma despite their reduced fitness due to long-term immune memory. We investigated the survival of latent lineages by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation process including nucleotide substitutions, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Host: Kshitij Wagh |