Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, March 30, 2015
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Fate of the Kinetic Ising and Potts Model

Sidney Redner
Santa Fe Institute

What happens when the Ising model initially at infinite temperature is suddenly cooled to zero temperature and subsequently evolves by single spin-flip dynamics? In two dimensions, the ground state is reached only about 2/3 of the time, and the evolution is characterized by two distinct time scales, the longer of which arises from topological defects. There is also an intriguing and deep connection between domain topologies and continuum percolation. In three dimensions, the ground state is never reached and (i) domains at long times are topologically complex, with average genus growing algebraically with system size; (ii) "blinker" spins always arise that can flip ad infinitum with no energy cost; (iii) the relaxation time grows exponentially with system size. The zero-temperature coarsening of the q-state Potts model is richer still. In two dimensions, acroscopic avalanches may occur at long times that drive apparently frozen systems to the ground state.

Host: Aric Hagberg