Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, June 17, 2015
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

The Hearts and Minds of Data Science

Cecilia Aragon
University of Washington

Thanks in part to the recent popularity of the buzzword "big data," it is now generally understood that many important scientific breakthroughs are made by interdisciplinary collaborations of scientists working in geographically distributed locations, producing and analyzing vast and complex data sets. The extraordinary advances in our ability to acquire and generate data in physical, biological, and social sciences are transforming the fundamental nature of science discovery across domains. Much of the research in this area, which has become known as data science, has focused on automated methods of analyzing data such as machine learning and new database techniques. Less attention has been directed to the human aspects of data science, including how to build interactive tools that maximize scientific creativity and human insight, and how to train, support, motivate, and retain the individuals with the necessary skills to produce the next generation of scientific discoveries.??In this talk, I will argue for the importance of a human-centered approach to data science as necessary for the success of 21st century scientific discovery. Further, I attest that we need to go beyond well-designed user interfaces for data science software tools to consider the entire ecosystem of software development and use: we need to study scientific collaborations interacting with technology as socio-technical systems, where both computer science and social science approaches are interwoven. I will discuss promising research in this area, describe the current status of the Moore/Sloan Data Science Environment at UW, and speculate upon future directions for data science.

Host: Curt Canada, 5-7453