Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, July 08, 2015
2:30 PM - 3:30 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

The Square-Root Information Increment Ensemble Kalman Filter and Applications to Upper Atmosphere Data Assimilation

Mark L. Psiaki

A new type of Ensemble Kalman Filter (EnKF) is developed, one that stores and updates its state information in an efficient square-root information filter form. It addresses two shortcomings of conventional EnKFs, the lack of a process noise model and the overly optimistic approximation of the estimation error statistics. The new filter uses an assumed a priori covariance approximation that is full-rank but sparse, possibly with a dense low-rank increment. This matrix can be used to develop a nominal square-root information equation for the system state and uncertainty. The measurements are used to develop an additional low-rank set of square-root information equations. Special algorithms provide forecasts and analyses of these increments at a computational cost comparable to that of existing EnKFs. Process noise effects are implicit in the a priori covariance time history, thereby obviating the need for an ad hoc inflation operation. The use of an a priori full-rank covariance allows the analysis operations to improve the state estimate without the need for an ad hoc localization adjustment. This new filter exhibits superior performance to a typical covariance square-root EnKF when operating on truth-model simulation data from a model of a 200-state spring-mass-damper network.

This new EnKF is being developed to solve data assimilation problems in the upper atmosphere. One target application is the assimilation of data into the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM). An existing EnKF assimilates in situ neutral-density and electron-density data that are measured by satellites. The new EnKF is being considered to enable augmentation of this filter to assimilate GPS slant TEC from satellite-based radio occultations. This data type presents a challenge for traditional EnKFs because of its non-local nature. Another target application is to develop a real-time International Reference Ionosphere model that assimilates GPS slant TEC data from radio occultations and from a network of ground receivers along with data from a network of ground-based ionosondes. The challenges and opportunities of these two proposed applications will be discussed along with the potential for the new EnKF to meet the challenges.

Host: Humberto C. Godinez