Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, October 15, 2015
12:30 PM - 1:30 PM
T-DO Conference Room

Quantum Lunch

Gapped and gapless phases of frustration-free spin-1/2 chains

David Gosset
Caltech

We consider a family of translation-invariant quantum spin chains with nearest-neighbor interactions and derive necessary and sufficient conditions for these systems to be gapped in the thermodynamic limit. More precisely, let psi be an arbitrary two-qubit state. We consider a chain of n qubits with open boundary conditions and Hamiltonian which is defined as the sum of rank-1 projectors onto psi applied to consecutive pairs of qubits. We show that the spectral gap of the Hamiltonian is upper bounded by 1/(n-1) if the eigenvalues of a certain two-by-two matrix simply related to psi have equal non-zero absolute value. Otherwise, the spectral gap is lower bounded by a positive constant independent of n (depending only on psi). A key ingredient in the proof is a new operator inequality for the ground space projector which expresses a monotonicity under the partial trace. This monotonicity property appears to be very general and might be interesting in its own right. As an extension of our main result, we obtain a complete classification of gapped and gapless phases of frustration-free translation-invariant spin-1/2 chains with nearest-neighbor interactions. This is joint work with Sergey Bravyi.

Host: Rolando Somma