Lab Home | Phone | Search | ||||||||
|
||||||||
Metal forming processes such as bulge and stretch forming as well as deep drawing are required for the manufacturing of automotive parts and steel sheet panels. In this contribution, a non-alloyed steel (DC04) is investigated numerically on the meso and the macro scale. In a first step, macro tensile tests are used to estimate the material parameters using large strain single crystal and polycrystal plasticity models. Two-dimensional electron backscatter diffraction (EBSD) data are discretized by finite elements and subjected to homogeneous displacement boundary conditions for grain scale simulations in the second step. In the third step, a two-scale Taylor type model is applied at the integration points of the finite elements to simulate a deep drawing process based on the experimental crystallographic texture data. The texture data required for the specification of the two-scale polycrystal model are determined by using two methodically different methods. Finally, a formability prediction based on the aforementioned two-scale model is analyzed by applying two classical localization criteria for different strain paths. Host: DJ Lusher |