Lab Home | Phone | Search | ||||||||
|
||||||||
The Particle-In-Cell (PIC) code SMILEI is an open-source project developed by the PIC communityat the Plateau de Saclay to support the development of the Apollon laser within the CILEX framework. SMILEI stands for Simulation of Matter Irradiated by Light at Extreme Intensities, and is developed through a collaboration between various teams at Ecole Polytechnique, at the CEA/Saclay and with strong support from the Maison de la Simulation and IDRIS on the numerical side. To face the diverse needs of the teams involved in its development, SMILEI is developed in C++ based on an object-oriented architecture. Its modularity allows to run simulations in various dimensions and geometries. Today, the one-dimensional in space three-dimensional in velocity (1D3V) and 2D3V versions of the code have been developed and benchmark. The development of a 3D3V version of the code is currently under development. SMILEI modularity also allows to choose between various Maxwell solvers and particle pushers, and different order of interpolation/projection are available. Finally, Monte-Carlo routines are currently under development to account for (i) high-energy (gamma) photon emission and its back-reaction on the electron dynamics, as well as (ii) electron-positron pair creation. Such routines will be of particular importance for the modelling of strongly relativistic astrophysical scenarii. On the parallelisation side, SMILEI benefits from a state-of-the-art hybrid MPI/OpenMP parallelisation, and an original particle sorting algorithm. SMILEI is therefore designed to run on massively parallel machines, and its flexibility should allow one to benefit from the newest and futures HPC architectures. As a application of SMILEI, we present 1D and 2D simulations of a laser amplification by parametric instabilities. In order to do this we simulate the crossing of a pump laser beam with a counter propagating seed laser beam with the same carrier frequency inside a plasma. We explore the role played by different plasma and laser physical parameter in order to optimize the amplification process. Currently available on GitLab (https://sourcesup.renater.fr/projects/smilei/) to the community of the Plateau de Saclay, SMILEI is intended as an open-source code. Host: Gian Luca Delzanno |