Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, April 07, 2016
1:00 PM - 2:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Monotonicity Properties in Dissipative Flow Networks

Sidhant Misra
LANL T-5

Dissipative flow networks model flow of fluids or commodities across a network. The flow dynamics on edges are governed by non-linear dissipative partial differential equations. The dynamics on adjacent edges are coupled through Kirchhoff-Neumann boundary conditions that also account for the injection parameters at the nodes. We establish a monotonicity property which states that the ordering of the initial states (e.g. density) is preserved throughout the time evolution of the system whenever the nodal injection parameters also obey the same ordering. We show that the dynamic system resulting from an appropriate choice of spatial discretization of the system of PDEs inherits this monotonicity property and can be used within simulation and optimization. We also prove a monotonicity property for dissipative networks in steady state and establish a connection between the dynamic and steady state results. These results enable significant simplification in the representation and algorithms for robust optimization and control problems under uncertain nodal injections.