Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, July 21, 2016
2:00 PM - 2:10 PM
CNLS Conference Room (TA-3, Bldg 1690)

Student Seminar

Inferring low-dimensional manifolds of materials microstructure

Nicholas Lubbers
Boston University

Modern materials design harnesses complex microstructure effects to develop high-performance materials. Recent highly successful approaches to materials design use machine learning algorithms for optimization. In order to incorporate microstructure into these approaches, a compact description of microstructure is required. However, faithful quantization of microstructure is an unsolved problem. We establish a method motivated by statistical physics which envisions microstructure variations as a low-dimensional manifold. We construct this manifold by leveraging multiple machine learning techniques including transfer learning, dimensionality reduction, and computer vision breakthroughs with convolutional neural networks.

Host: Chris Neale