Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, August 15, 2016
11:00 AM - 12:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

A Family of Regionally Implicit Discontinuous Galerkin Methods with Applications to solving the Relativistic Vlasov-Maxwell System

Pierson Guthrey
Dept. Math., Iowa State University

In the relativistic limit, the Vlasov-Maxwell system introduces numerical difficulties as explained in . We develop an efficient solver for the relativistic Vlasov-Maxwell (RVM) system in order to model laser-plasma interactions; and in particular, the acceleration of electrons or ions to relativistic energies. In doing so we expand on the so called Locally Implicit Discontinuous Galerkin method (LIDG) developed in by defining Regionally Implicit Discontinuous Galerkin Methods. These methods are parametrized by the region parameter r. For a given cell, the region parameter determines how many neighboring cells (this collection of cells known as the region) will provide information to the prediction step of the method. We use a Rusanov Riemann solver on the interior of said region and the interior cell values on the boundary of the region. We show that these methods allow a much larger CFL number when compared to the LIDG method, and thus offer a vastly improved efficiency over the LIDG method. Here we introduce the methods applied to the 1D, 2D, and 3D advection equations.

Host: Luis Chacon