Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, December 07, 2016
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Improving hyperspectral detection of solids using spectral features.

Cory Lanker
Lawrence Livermore National Laboratory

Current detection methods for solid materials can suffer high false alarm rates. Reduction of the number of false alarms may be possible with a hyperspectral representation of solids that has less variability. To reduce this hyperspectral variability we characterize solid materials through spectral features derived using Gaussian basis functions and spectral fitting with regularized regression. Our goal is to improve compositional exploitation in an LWIR hyperspectral imaging sensor data cube using a detection algorithm based on spectral features. There are material-specific properties of these spectral features that show subtle variability when considering changes in morphology or measurement conditions. This new approach has good initial detection results across material particle size, measurement angle, and atmospheric conditions using LLNL experimental measurements for validation purposes. To help those unfamiliar with this research topic, the talk provides an introduction to infrared theory and hyperspectral data analysis.

Host: James Theiler