Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, January 26, 2017
1:00 PM - 2:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Geometric Analysis of Sparsity Parameter Selection in Dictionary Learning

Erik Skau
North Carolina State University

Sparse representations with learned dictionaries are one of the leading image modeling techniques for image restoration. When learning these dictionaries from a set of training images, the sparsity parameter of the dictionary learning algorithm strongly influences the content of the dictionary atoms, and ultimately the performance of an image restoration technique making use of that dictionary. In this talk, we describe geometrically the content of trained dictionaries and how it changes with the sparsity parameter. We use statistical analysis to characterize how the different content is used in sparse representations. Finally, we demonstrate a method to control the structure of the dictionaries, allowing us to learn a dictionary which can later be tailored for specific applications.

Host: Brendt Wohlberg