Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, February 22, 2017
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Quantitative Modeling of Physical Systems with Uncertain Parameters

Daniel Tartakovsky
Stanford University

Nonlinear parabolic equations with uncertain (random) coefficients play an important role in science and engineering, including geosciences where they are used to describe multiphase flow in heterogeneous porous media. We review several alternative probabilistic approaches for uncertainty quantification (UQ) in such problems, including stochastic collocation (SC) strategies---the current method of choice in the UQ community---and other techniques based on a spectral decomposition of state variables in the probability space. We demonstrate that the performance of SC is strongly tied to the way the stochastic properties of the random input parameters affect the regularity of the systems' stochastic response in the probability space. If random input fields have low variance and large correlation lengths, SC strategies are competitive against alternative uncertainty quantification methods, such as Monte Carlo simulations (MCS). Increasing variance affects the regularity of the stochastic response, requiring higher-order quadrature rules to accurately approximate the moments of interest, thus increasing the overall computational cost beyond that of MCS. We develop reduced complexity models, which yield closed-form semi-analytical expressions for the single- and multi-point probability density functions (PDFs) of the state variables. These solutions enable us to investigate the relative importance of uncertainty in various input parameters (e.g., hydraulic soil properties) and the effects of their cross-correlation. Our simulation results demonstrate the reduced complexity models provide conservative estimates of predictive uncertainty.

Host: Gowri Srinivasan