Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, November 02, 2017
1:00 PM - 2:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Sn-based Hybrid Perovskite Solar Cells from solar cells to hot electrons

Maria Antonietta Loi
Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen

Thanks to the intensive research efforts of a large scientific community over the past 7 years, lead (Pb)-based hybrid perovskite solar cells have achieved an impressive power conversion efficiency. Large improvements in the thermal and photo stability of this kind of solar cell by using more stable precursors, and robust hole/electron transport layers have been achieved. Despite these outstanding accomplishments, the toxicity of lead causes concerns about the possible large-scale utilization of this new type of solar cell. Among the various alternatives to lead, Sn has been recognized to have a great potential, as the Sn-based hybrid perovskites display excellent optical and electrical properties such as high absorption coefficients, small exciton binding energies and high charge carrier mobilities. In my talk I will show that Sn-based perovskites display evidences of photoluminescence from hot-carriers with unexpectedly long lifetime. The asymmetry of the PL spectrum at the high-energy edge, is accompanied by the unusually large blue shift of the time-integrated photoluminescence with increasing the excitation power. These phenomena are associated with slow hot carrier relaxation and state-filling of band edge states. I will further show all-tin-based hybrid perovskite solar cells with efficiencies of up to 9%. This record result is obtained with the addition of trace amount of 2D tin perovskite, which initiates the homogenous growth of highly crystalline and oriented FASnI3 grains at low temperature.

Host: Amanda Neurkirch