Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, April 18, 2018
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Deterministic and stochastic acceleration techniques for Richardson-type iterations

Massimiliano (Max) Lupo Pasini
Emory University

The next generation of computational science applications will require numerical solvers that are both reliable and capable of high performance on projected exascale platforms. In order to meet these goals, solvers must be resilient to soft and hard system failures, provide high concurrency on heterogeneous hardware configurations, and retain numerical accuracy and efficiency. This work focuses on the solution of large sparse systems of linear equations, for example of the kind arising from the discretization of partial differential equations (PDEs). Specifically, the goal is to investigate alternative approaches to existing solvers (such as preconditioned Krylov subspace or multigrid methods). To do so, we consider stochastic and deterministic accelerations of relaxation schemes. On the one hand, starting from a convergent splitting of the coefficient matrix, we analyze various types of Monte Carlo acceleration schemes applied to the original preconditioned Richardson (stationary) iteration. These methods are expected to have considerable potential for resiliency to faults when implemented on massively parallel machines. In this framework, we have identified classes of problems and preconditioners that guarantee convergence. On the other hand, we consider Anderson-type accelerations to increase efficiency and improve the convergence rate with respect to one level fixed point schemes. In particular, we focus on a recently introduced method called Alternating Anderson-Richardson (AAR). We provide theoretical results to explain the advantages of AAR over other similar schemes presented in literature and we show numerical results where AAR is competitive against restarted versions of the generalized minimum residual method (GMRES) for problems of different nature and different preconditioning techniques.