Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, December 12, 2018
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Statistical Analysis for Quantification and Visualization of Spatial Variability in Features of Uncertain Data

Tushar Athawale
University of Utah

Data visualization has become indispensable for efficient interpretation of large-scale data generated across diverse scientific domains, such as biomedical imaging and climate studies. Many critical decisions directly rely on the quality of data visualizations. Inaccuracies in visualizations cannot be averted due to uncertainties inherent in underlying data and non-linear transformations of data caused by the stages of visualization pipeline. The uncertainty in the final visualizations can adversely impact the decision-making process. The accurate quantification of uncertainties in data visualizations has, therefore, been recognized as the top research challenge for minimizing risks associated with scientific decisions. In our work, we statistically quantify positional variations in features of uncertain data for two applications. First, we study the interaction of the marching cubes algorithm with uncertain data for probabilistic quantification of positional variations in level-set extractions. Second, we study spatial variability in objects of known geometry arising from their finite-resolution imaging. Specifically, we perform our second study on electrodes of fixed geometry used for deep brain stimulation (DBS) surgery. Our uncertainty visualizations for level-set extraction and DBS electrode localization confirm the significance of incorporating statistical error analysis into computational models for visualization applications.

For questions, or to schedule time with Tushar, please contact: Chris Biwer, 505-665-8009, cmbiwer@lanl.gov

Host: Chris Biwer