Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, July 16, 2019
09:30 AM - 10:30 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Updated: Machine Learning through the Information Bottleneck

Artemy Kolchinsky
Santa Fe Institute

The information bottleneck (IB) has been proposed as a principled way to compress a random variable, while only preserving that information which is relevant for predicting another random variable. In recent times, the IB has been proposed --- and challenged --- as a theoretical framework for understanding why and how deep learning architectures achieve good performance. I will cover: (1) an introduction to the ideas behind IB, (2) methods for implementing information-theoretic compression in neural networks + some possible applications of such methods, (3) the current status of the IB theory of deep learning, (4) recently discovered caveats that arise for IB in machine learning scenarios.

NOTE: Future speaker nominations through the Information Science and Technology Institute (ISTI) are welcome and can be entered at: https://isti-seminar.lanl.gov/app/calendar.

Host: Juston Moore