Lab Home | Phone | Search | ||||||||
|
||||||||
Integrating cold atoms with nanophotonics enables the exploration of new paradigms in quantum optics and many-body physics. Advanced fabrication capabilities for low-loss dielectric materials provide powerful tools to engineer light-matter couplings between photons and atoms. The current system at Caltech to explore such phenomena consists of a quasi-one-dimensional photonic crystal waveguide (PCW) whose band structure arises from periodic modulation of the dielectric structure. The waveguide design gives rise to stable trap sites for atoms That can interact with one another via GMs of the waveguide creating a versatile system that can be utilized for both quantum memories and quantum simulation. We have performed extensive trajectory simulations of atoms delivered by an optical lattice to the PCWs. The good correspondence between simulation and data enables us to understand the microscopic dynamics of atoms near the waveguide and introduce auxiliary GMs that perturb the atoms and reveal how they can be delivered to the trap regions [1]. Beyond these experiments I will discuss my research plans using optical tweezers for the delivery of atom arrays to nanophotonic structures. By utilizing the collective behavior of atoms in these arrays we can improve the performance of technologies such as quantum memories constructed from such systems. 1] A. P. Burgers et al. "Clocked Atom Delivery to a Photonic Crystal Waveguideā€¯. Proc. Natl. Acad. Sci. 116, 2 456 (2019) Host: Michael Martin |