Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, November 07, 2019
09:30 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Can machine learning make rare events more frequent?

Gerhard Hummer
Max Planck Institute of Biophysics

Computational molecular sciences face three major challenges: model quality (i.e., force fields), data explosion, and nonetheless inadequate sampling of the most interesting events. Machine learning approaches hold much promise in all three areas. Our work concerns the latter two: how to extract useful information from large amounts of trajectory data, and how to steer the sampling to maximize the amount of useful information. We will report on our progress towards a fully autonomous, data-driven production and interpretation of molecular dynamics trajectories by combining machine learning and enhanced sampling methods.

Host: Angel E. Garcia